Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
References listed on IDEAS
- Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013.
"Jump tails, extreme dependencies, and the distribution of stock returns,"
Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
- Tim Bollerslev & Viktor Todorov, 2010. "Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns," CREATES Research Papers 2010-64, Department of Economics and Business Economics, Aarhus University.
- Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
- Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," International Finance Discussion Papers 1005, Board of Governors of the Federal Reserve System (U.S.).
- Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012.
"Modelling and forecasting noisy realized volatility,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Modelling and Forecasting Noisy Realized Volatility," CIRJE F-Series CIRJE-F-669, CIRJE, Faculty of Economics, University of Tokyo.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," Documentos de Trabajo del ICAE 2011-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, M. & McAleer, M.J. & Medeiros, M., 2011. "Modelling and Forecasting Noisy Realized Volatility," Econometric Institute Research Papers EI 2011-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
- Manuabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Modelling and Forecasting Noisy Realized Volatility," Working Papers in Economics 10/21, University of Canterbury, Department of Economics and Finance.
- Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009.
"Microstructure noise in the continuous case: The pre-averaging approach,"
Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
- Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
- Bekaert, Geert & Hoerova, Marie, 2014.
"The VIX, the variance premium and stock market volatility,"
Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
- Geert Bekaert & Marie Hoerova, 2013. "The VIX, the Variance Premium and Stock Market Volatility," NBER Working Papers 18995, National Bureau of Economic Research, Inc.
- Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004.
"Analytical Evaluation Of Volatility Forecasts,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Conrad, Christian & Loch, Karin, 2015.
"The variance risk premium and fundamental uncertainty,"
Economics Letters, Elsevier, vol. 132(C), pages 56-60.
- Conrad, Christian & Loch, Karin, 2015. "The Variance Risk Premium and Fundamental Uncertainty," Working Papers 0583, University of Heidelberg, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2006.
"Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
- Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
- Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Staudenmayer, John & Buonaccorsi, John P., 2005. "Measurement Error in Linear Autoregressive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 841-852, September.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Hansen, Peter R. & Lunde, Asger, 2014.
"Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error,"
Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
- Peter R. Hansen & Asger Lunde, 2010. "Estimating the Persistence and the Autocorrelation Function of a Time Series that is Measured with Error," CREATES Research Papers 2010-08, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
- Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2014. "Realized Beta Garch: A Multivariate Garch Model With Realized Measures Of Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 774-799, August.
- Selma Chaker & Nour Meddahi, 2013. "Volatility Forecasting when the Noise Variance Is Time-Varying," Staff Working Papers 13-48, Bank of Canada.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
- Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
- Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
- Federico M. Bandi & Jeffrey R. Russell & Chen Yang, 2013. "Realized Volatility Forecasting in the Presence of Time-Varying Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 331-345, July.
- Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005.
"A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
- Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014.
"A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity,"
Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2013. "A robust neighborhood truncation approach to estimation of integrated quarticity," International Finance Discussion Papers 1078, Board of Governors of the Federal Reserve System (U.S.).
- G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2013. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, volume 2, number 2-b, March.
- G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2013. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, volume 2, number 2-a, March.
- Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
- Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
- Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," Finance and Economics Discussion Series 2010-45, Board of Governors of the Federal Reserve System (U.S.).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017.
"Inference from high-frequency data: A subsampling approach,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
- Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010.
"Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets,"
Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
- Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2007. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," International Finance Discussion Papers 905, Board of Governors of the Federal Reserve System (U.S.).
- Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
- Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
- Jozef Barunik & Lukas Vacha, 2015.
"Realized wavelet-based estimation of integrated variance and jumps in the presence of noise,"
Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
- Jozef Barunik & Lukas Vacha, 2012. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Papers 1202.1854, arXiv.org, revised Feb 2013.
- Baruník, Jozef & Vácha, Lukáš, 2014. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," FinMaP-Working Papers 16, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020.
"High-frequency jump tests: Which test should we use?,"
Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2020. "High-Frequency Jump Tests: Which Test Should We Use?," Monash Econometrics and Business Statistics Working Papers 3/20, Monash University, Department of Econometrics and Business Statistics.
- Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011.
"Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," CREATES Research Papers 2008-63, Department of Economics and Business Economics, Aarhus University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Papers 2008-W10, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Ole E. Barndorff-Nielsen & Peter Reinhard Hansen, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Series Working Papers 397, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Post-Print hal-00815564, HAL.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
- Jim Griffin & Jia Liu & John M. Maheu, 2021.
"Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation],"
Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
- Griffin, Jim & Liu, Jia & Maheu, John M, 2016. "Bayesian Nonparametric Estimation of Ex-post Variance," MPRA Paper 71220, University Library of Munich, Germany.
- Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010.
"Realised quantile-based estimation of the integrated variance,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
- Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Roel Oomen & Mark Podolskij, 2010. "Realised quantile-based estimation of the integrated variance," Post-Print hal-00732538, HAL.
- Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
More about this item
Keywords
Realized volatility; Forecasting; Measurement Errors; HAR; HARQ;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2015-04-02 (Econometrics)
- NEP-ETS-2015-04-02 (Econometric Time Series)
- NEP-FOR-2015-04-02 (Forecasting)
- NEP-ORE-2015-04-02 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2015-14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.