IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i6p2390-2403.html
   My bibliography  Save this article

Simulated minimum Hellinger distance estimation of stochastic volatility models

Author

Listed:
  • Takada, Teruko

Abstract

A simultaneously efficient and robust approach for distribution-free parametric inference, called the simulated minimum Hellinger distance (SMHD) estimator, is proposed. In the SMHD estimation, the Hellinger distance between the nonparametrically estimated density of the observed data and that of the simulated samples from the model is minimized. The method is applicable to the situation where the closed-form expression of the model density is intractable but simulating random variables from the model is possible. The robustness of the SMHD estimator is equivalent to the minimum Hellinger distance estimator. The finite sample efficiency of the proposed methodology is found to be comparable to the Bayesian Markov chain Monte Carlo and maximum likelihood Monte Carlo methods and outperform the efficient method of moments estimators. The robustness of the method to a stochastic volatility model is demonstrated by a simulation study. An empirical application to the weekly observations of foreign exchange rates is presented.

Suggested Citation

  • Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2390-2403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00325-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Woo, Mi-Ja & Sriram, T.N., 2006. "Robust Estimation of Mixture Complexity," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1475-1486, December.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    5. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    6. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    7. Teruko Takada, 2008. "Asymptotic and qualitative performance of non-parametric density estimators: a comparative study," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 573-592, November.
    8. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    9. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    10. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    11. Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
    12. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    13. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    14. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    15. Giet, Ludovic & Lubrano, Michel, 2008. "A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2945-2965, February.
    16. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    17. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 413-450.
    18. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    19. Wang, Yong, 2007. "Minimum disparity computation via the iteratively reweighted least integrated squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5662-5672, August.
    20. Zudi Lu & Yer Van Hui & Andy H. Lee, 2003. "Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications," Biometrics, The International Biometric Society, vol. 59(4), pages 1016-1026, December.
    21. Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
    22. Altissimo, Filippo & Mele, Antonio, 2005. "Simulated nonparametric estimation of dynamic models with applications to finance," LSE Research Online Documents on Economics 24658, London School of Economics and Political Science, LSE Library.
    23. Wand, M. P. & Devroye, Luc, 1993. "How easy is a given density to estimate?," Computational Statistics & Data Analysis, Elsevier, vol. 16(3), pages 311-323, September.
    24. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    25. Karlis, Dimitris & Xekalaki, Evdokia, 1998. "Minimum Hellinger distance estimation for Poisson mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 81-103, November.
    26. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    27. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    28. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    29. Watanabe, Toshiaki, 1999. "A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 101-121, March-Apr.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurini Márcio Poletti, 2013. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 193-229, May.
    2. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    3. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    4. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    5. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    2. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    3. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    4. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    5. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    8. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    9. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    10. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    11. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    12. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    13. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    14. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    15. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    16. repec:bgu:wpaper:0603 is not listed on IDEAS
    17. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    18. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    19. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    20. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    21. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2390-2403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.