IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v63y2013i5p425-442.html
   My bibliography  Save this article

Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets

Author

Listed:
  • Krenar AVDULAJ

    (Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, and Institute of Economic Studies, Charles University, Prague)

  • Jozef BARUNIK

    (Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, and Institute of Economic Studies, Charles University, Prague)

Abstract

One of the findings of the recent literature is that the 2008 financial crisis caused a reduction in international diversification benefits. To fully understand the potential of diversification, we build an empirical model which combines generalized autoregressive score copula functions with high-frequency data and allows us to capture and forecast the conditional time-varying joint distribution of stock returns. Using this novel methodology and fresh data covering five years after the crisis, we compute the conditional diversification benefits to answer the question of whether it is still interesting for an international investor to diversify. As diversification tools, we consider the Czech PX and the German DAX broad stock indices, and we find that the diversification benefits strongly vary over the 2008–2013 crisis years.

Suggested Citation

  • Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
  • Handle: RePEc:fau:fauart:v:63:y:2013:i:5:p:425-442
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1283_425-42---avdulaj.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    2. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Theodore Syriopoulos, 2004. "International portfolio diversification to Central European stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(17), pages 1253-1268.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    7. Nektarios Aslanidis & Christos S. Savva, 2011. "Are There Still Portfolio Diversification Benefits In Eastern Europe? Aggregate Versus Sectoral Stock Market Data," Manchester School, University of Manchester, vol. 79(6), pages 1323-1352, December.
    8. Gjika, Dritan & Horváth, Roman, 2013. "Stock market comovements in Central Europe: Evidence from the asymmetric DCC model," Economic Modelling, Elsevier, vol. 33(C), pages 55-64.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    10. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    11. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    12. Horvath, Roman & Petrovski, Dragan, 2013. "International stock market integration: Central and South Eastern Europe compared," Economic Systems, Elsevier, vol. 37(1), pages 81-91.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Voronkova, Svitlana, 2004. "Equity market integration in Central European emerging markets: A cointegration analysis with shifting regimes," International Review of Financial Analysis, Elsevier, vol. 13(5), pages 633-647.
    15. Manner, Hans & Segers, Johan, 2011. "Tails of correlation mixtures of elliptical copulas," LIDAM Reprints ISBA 2011002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Syriopoulos, Theodore, 2006. "Risk and return implications from investing in emerging European stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(3), pages 283-299, July.
    17. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    18. Syllignakis, Manolis N. & Kouretas, Georgios P., 2011. "Dynamic correlation analysis of financial contagion: Evidence from the Central and Eastern European markets," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 717-732, October.
    19. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    20. Jan Hanousek & Evžen Kočenda, 2011. "Foreign News and Spillovers in Emerging European Stock Markets," Review of International Economics, Wiley Blackwell, vol. 19(1), pages 170-188, February.
    21. Balázs Égert & Evžen Kočenda, 2011. "Time-varying synchronization of European stock markets," Empirical Economics, Springer, vol. 40(2), pages 393-407, April.
    22. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    23. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
    24. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    25. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    26. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    27. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    28. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    29. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    30. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    31. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    32. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    33. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    34. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    35. Egert, Balazs & Kocenda, Evzen, 2007. "Interdependence between Eastern and Western European stock markets: Evidence from intraday data," Economic Systems, Elsevier, vol. 31(2), pages 184-203, June.
    36. Manner, Hans & Segers, Johan, 2011. "Tails of correlation mixtures of elliptical copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 153-160, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reboredo, Juan C. & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2015. "An analysis of dependence between Central and Eastern European stock markets," Economic Systems, Elsevier, vol. 39(3), pages 474-490.
    2. Sekuła Paweł, 2019. "Causality Analysis Between Stock Market Indices," Financial Sciences. Nauki o Finansach, Sciendo, vol. 24(1), pages 74-93, March.
    3. Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
    4. Albulescu, Claudiu Tiberiu & Aubin, Christian & Goyeau, Daniel & Tiwari, Aviral Kumar, 2018. "Extreme co-movements and dependencies among major international exchange rates: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 56-69.
    5. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    2. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    5. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    6. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    7. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    8. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    9. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    10. Reboredo, Juan C. & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2015. "An analysis of dependence between Central and Eastern European stock markets," Economic Systems, Elsevier, vol. 39(3), pages 474-490.
    11. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers 07-19, Association Française de Cliométrie (AFC).
    12. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    13. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    14. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2014. "Modeling Dependence Structure and Forecasting Portfolio Value-at-Risk with Dynamic Copulas," SIRE Discussion Papers 2015-25, Scottish Institute for Research in Economics (SIRE).
    15. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    16. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    17. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    19. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    20. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.

    More about this item

    Keywords

    portfolio diversification; dynamic correlations; high-frequency data; time-varying copulas;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:63:y:2013:i:5:p:425-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.