Is there an ideal in-sample length for forecasting volatility?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.intfin.2015.02.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
- Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
- Lobato, Ignacio N & Savin, N E, 1998.
"Real and Spurious Long-Memory Properties of Stock-Market Data,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
- Lobato, I.N. & Savin, N.E., 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Working Papers 96-07, University of Iowa, Department of Economics.
- I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, University Library of Munich, Germany, revised 26 Sep 1996.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Pagan, Adrian R. & Schwert, G. William, 1990.
"Alternative models for conditional stock volatility,"
Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
- Adrian R. Pagan & G. William Schwert, 1989. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
- Pagan, A.R. & Schwert, G.W., 1989. "Alternative Models For Conditional Stock Volatility," Papers 89-02, Rochester, Business - General.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Engle, Robert F. & Gallo, Giampiero M., 2006.
"A multiple indicators model for volatility using intra-daily data,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
- Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
- Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Philippe Jorion, 1996. "Risk and Turnover in the Foreign Exchange Market," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 19-40, National Bureau of Economic Research, Inc.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
- Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
- Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
- Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
- Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
- Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
- Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
- Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
- Díaz-Mendoza, Ana-Carmen & Pardo, Angel, 2020. "Holidays, weekends and range-based volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
- David McMillan & Raquel Quiroga Garcia, 2009. "Intra-day volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 19(8), pages 611-623.
- Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
- McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
- Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018.
"Volatility forecasting across tanker freight rates: The role of oil price shocks,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
- Konstantinos Gavriilidis & Dimos S. Kambouroudis & Katerina Tsakou & Dimitris S. Tsouknidis, 2018. "Volatility forecasting across tanker freight rates: the role of oil price shocks," Working Papers 2018-27, Swansea University, School of Management.
- Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
- Raúl de Jesús Gutiérrez & Edgar Ortiz & Oswaldo García Salgado, 2017. "Los efectos de largo plazo de la asimetría y persistencia en la predicción de la volatilidad: evidencia para mercados accionarios de América Latina," Contaduría y Administración, Accounting and Management, vol. 62(4), pages 1063-1080, Octubre-D.
- Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
- Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
- Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
- Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005.
"Evaluating volatility forecasts in option pricing in the context of a simulated options market,"
Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating Volatility Forecasts in Option Pricing in the Context of a Simulated Options Market," MPRA Paper 80468, University Library of Munich, Germany.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
- Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005.
"Volatility forecasting,"
CFS Working Paper Series
2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
More about this item
Keywords
Forecasting; In-sample; Stock market; Volatility;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:37:y:2015:i:c:p:114-137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.