Efficient iterative maximum likelihood estimation of high-parameterized time series models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," CFS Working Paper Series 450, Center for Financial Studies (CFS).
References listed on IDEAS
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- White,Halbert, 1996.
"Estimation, Inference and Specification Analysis,"
Cambridge Books,
Cambridge University Press, number 9780521574464.
- White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805, September.
- Christian Kascha, 2012.
"A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
- Christian Kascha, 2007. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Economics Working Papers ECO2007/12, European University Institute.
- Bodnar, Taras & Hautsch, Nikolaus, 2012.
"Copula-based dynamic conditional correlation multiplicative error processes,"
SFB 649 Discussion Papers
2012-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bodnar, Taras & Hautsch, Nikolaus, 2013. "Copula-based dynamic conditional correlation multiplicative error processes," CFS Working Paper Series 2013/19, Center for Financial Studies (CFS).
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
- Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2014-010 is not listed on IDEAS
- Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Nikolaus Hautsch & Ostap Okhrin & Alexander Ristig, 2023. "Maximum-Likelihood Estimation Using the Zig-Zag Algorithm," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1346-1375.
- Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- repec:hum:wpaper:sfb649dp2015-038 is not listed on IDEAS
- repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
- Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
- Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
- Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022.
"Asymmetric Network Connectedness of Fears,"
The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
- Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2018. "Asymmetric Network Connectedness of Fears," Papers 1810.12022, arXiv.org, revised Oct 2020.
- Baruník, Jozef & Bevilacqua, Mattia & Tunaru, Radu, 2022. "Asymmetric network connectedness of fears," LSE Research Online Documents on Economics 108199, London School of Economics and Political Science, LSE Library.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022.
"Dynamic large financial networks via conditional expected shortfalls,"
European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
- Giovanni Bonaccolto & Massimiliano Caporin & Bertrand Maillet, 2022. "Dynamic Large Financial Networks via Conditional Expected Shortfalls," Post-Print hal-03287947, HAL.
- Yudhie Andriyana & Rinda Fitriani & Bertho Tantular & Neneng Sunengsih & Kurnia Wahyudi & I Gede Nyoman Mindra Jaya & Annisa Nur Falah, 2023. "Modeling the Cigarette Consumption of Poor Households Using Penalized Zero-Inflated Negative Binomial Regression with Minimax Concave Penalty," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
- Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
- Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016.
"TENET: Tail-Event driven NETwork risk,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
- Härdle, Wolfgang Karl & Sirotko-Sibirskaya, Natalia & Wang, Weining, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers 2014-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
- Ji, Qiang & Bouri, Elie & Kristoufek, Ladislav & Lucey, Brian, 2021. "Realised volatility connectedness among Bitcoin exchange markets," Finance Research Letters, Elsevier, vol. 38(C).
More about this item
Keywords
Multi-Step estimation; Sparse estimation; Multivariate time series; Maximum likelihood estimation; Copula;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2014-02-02 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.