IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v15y2009i4p353-380n4.html
   My bibliography  Save this article

A central limit theorem for the functional estimation of the spot volatility

Author

Listed:
  • Ngo Hoang-Long

    (Department of Mathematical Sciences, Ritsumeikan University, Shiga, Japan. Email: gr041086@ed.ritsumei.ac.jp)

  • Ogawa Shigeyoshi

    (Department of Mathematical Sciences, Ritsumeikan University, Shiga, Japan. Email: ogawa-s@se.ritsumei.ac.jp)

Abstract

In this paper we introduce a class of statistics for the functional estimation of the spot volatility in the setting of frequency observed diffusion processes which may be disturbed by microstructure noise. We show that the limit theorems for the estimation of the spot volatility and the cross spot volatility of the statistics are still valid even if we add jump processes of finite or infinite activity to the underlying diffusion process. These statistics extend the quadratic variational approach and are related to the concept of multipower variation, which is used in the problem of estimating the integrated volatility.

Suggested Citation

  • Ngo Hoang-Long & Ogawa Shigeyoshi, 2009. "A central limit theorem for the functional estimation of the spot volatility," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 353-380, January.
  • Handle: RePEc:bpj:mcmeap:v:15:y:2009:i:4:p:353-380:n:4
    DOI: 10.1515/MCMA.2009.019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/MCMA.2009.019
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/MCMA.2009.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    2. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
    3. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    5. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
    6. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    7. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    8. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nien-Lin Liu & Hoang-Long Ngo, 2014. "Approximation of eigenvalues of spot cross volatility matrix with a view toward principal component analysis," Papers 1409.2214, arXiv.org.
    2. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
    2. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk - realised semivariance," OFRC Working Papers Series 2008fe01, Oxford Financial Research Centre.
    3. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    4. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    5. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Inference for Integrated Volatility," Departmental Working Papers 200616, Rutgers University, Department of Economics.
    6. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    7. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    8. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    9. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    10. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    11. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    12. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    13. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    14. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    15. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    16. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
    17. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    18. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    19. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    20. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:15:y:2009:i:4:p:353-380:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.