IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v22y2024i3p743-772..html
   My bibliography  Save this article

Modeling Price and Variance Jump Clustering Using the Marked Hawkes Process

Author

Listed:
  • Jian Chen
  • Michael P Clements
  • Andrew Urquhart

Abstract

We examine the clustering behavior of price and variance jumps using high-frequency data, modeled as a marked Hawkes process (MHP) embedded in a bivariate jump-diffusion model with intraday periodic effects. We find that the jumps of both individual stocks and a broad index exhibit self-exciting behavior. The three dimensions of the model, namely positive price jumps, negative price jumps, and variance jumps, impact one another in an asymmetric fashion. We estimate model parameters using Bayesian inference by Markov Chain Monte Carlo, and find that the inclusion of the jump parameters improves the fit of the model. When we quantify the jump intensity and study the characteristics of jump clusters, we find that in high-frequency settings, jump clustering can last between 2.5 and 6 hours on average. We also find that the MHP generally outperforms other models in terms of reproducing two cluster-related characteristics found in the actual data.

Suggested Citation

  • Jian Chen & Michael P Clements & Andrew Urquhart, 2024. "Modeling Price and Variance Jump Clustering Using the Marked Hawkes Process," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 743-772.
  • Handle: RePEc:oup:jfinec:v:22:y:2024:i:3:p:743-772.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbad007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    2. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    3. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    4. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    5. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    6. Hossein Asgharian & Christoffer Bengtsson, 2006. "Jump Spillover in International Equity Markets," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 167-203.
    7. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    8. Michael P. Clements & Hans-Martin Krolzig, 2004. "Can regime-switching models reproduce the business cycle features of US aggregate consumption, investment and output?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 1-14.
    9. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    10. Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
    11. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    12. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    13. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    2. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    3. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    4. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    5. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    6. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    7. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
    8. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    9. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    10. Minseog Oh & Donggyu Kim, 2021. "Effect of the U.S.--China Trade War on Stock Markets: A Financial Contagion Perspective," Papers 2111.09655, arXiv.org.
    11. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
    13. Dungey, Mardi & Erdemlioglu, Deniz & Matei, Marius & Yang, Xiye, 2018. "Testing for mutually exciting jumps and financial flights in high frequency data," Journal of Econometrics, Elsevier, vol. 202(1), pages 18-44.
    14. Yuewen Xiao & Xiangkang Yin & Jing Zhao, 2020. "Jumps, News, And Subsequent Return Dynamics: An Intraday Study," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(3), pages 705-731, August.
    15. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    16. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    17. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    18. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    19. Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
    20. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.

    More about this item

    Keywords

    jump clustering; marked Hawkes process; stochastic volatility; high-frequency data; Bayesian inference;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:22:y:2024:i:3:p:743-772.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.