IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v13y2015i4p798-838..html
   My bibliography  Save this article

Accurate Methods for Approximate Bayesian Computation Filtering

Author

Listed:
  • Laurent E. Calvet
  • Veronika Czellar

Abstract

The Approximate Bayesian Computation (ABC) filter extends the particle filtering methodology to general state-space models in which the density of the observation conditional on the state is intractable. We provide an exact upper bound for the mean squared error of the ABC filter, and derive sufficient conditions on the bandwidth and kernel under which the ABC filter converges to the target distribution as the number of particles goes to infinity. The optimal convergence rate decreases with the dimension of the observation space but is invariant to the complexity of the state space. We show that the adaptive bandwidth commonly used in the ABC literature can lead to an inconsistent filter. We develop a plug-in bandwidth guaranteeing convergence at the optimal rate, and demonstrate the powerful estimation, model selection, and forecasting performance of the resulting filter in a variety of examples.

Suggested Citation

  • Laurent E. Calvet & Veronika Czellar, 2015. "Accurate Methods for Approximate Bayesian Computation Filtering," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 798-838.
  • Handle: RePEc:oup:jfinec:v:13:y:2015:i:4:p:798-838.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbu019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurent E. Calvet & Adlai Fisher, 2008. "Multifractal Volatility: Theory, Forecasting and Pricing," Post-Print hal-00671877, HAL.
    2. Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
    3. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    2. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    5. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    6. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
    9. Ajay Jasra, 2015. "Approximate Bayesian Computation for a Class of Time Series Models," International Statistical Review, International Statistical Institute, vol. 83(3), pages 405-435, December.
    10. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Beeler, Jason & Campbell, John Y., 2012. "The Long-Run Risks Model and Aggregate Asset Prices: An Empirical Assessment," Critical Finance Review, now publishers, vol. 1(1), pages 141-182, January.
    4. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    5. Hatcher, Michael, 2011. "Time-varying volatility, precautionary saving and monetary policy," Bank of England working papers 440, Bank of England.
    6. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    7. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," OFRC Working Papers Series 2004fe22, Oxford Financial Research Centre.
    9. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    10. Min Wang & Jun Wang, 2017. "Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(05), pages 1-21, May.
    11. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    12. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    13. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    14. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    15. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    16. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    17. David Blake & Marco Morales & Jing Ai & Patrick L. Brockett & Linda L. Golden & Wei Zhu, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 319-343, April.
    18. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    19. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    20. Milan Fičura & Jiří Witzany, 2018. "Use of Adapted Particle Filters in SVJD Models," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2018(3), pages 5-20.

    More about this item

    Keywords

    bandwidth; kernel density estimation; likelihood estimation; model selection; particle filter; state-space model; value-at-risk forecasts;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:13:y:2015:i:4:p:798-838.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.