IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v161y2023icp201-241.html
   My bibliography  Save this article

Nonlinear Poisson autoregression and nonlinear Hawkes processes

Author

Listed:
  • Huang, Lorick
  • Khabou, Mahmoud

Abstract

The nonlinear Hawkes process is a point process for which the occurrence of future events depends on its history, either by excitation or inhibition. This property made it popular in many fields, such as neuro-sciences and social dynamics. In this paper we propose a tractable nonlinear Poisson autoregression as a discrete-time Hawkes process. Our model allows for cross-excitation and inhibition between components, as well as for exogenous random noise on the intensity. We then prove a convergence theorem as the time step goes to zero. Finally, we suggest a parametric calibration method for the continuous-time Hawkes process based on the discrete-time approximation.

Suggested Citation

  • Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
  • Handle: RePEc:eee:spapps:v:161:y:2023:i:c:p:201-241
    DOI: 10.1016/j.spa.2023.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Alexander Wehrli & Spencer Wheatley & Didier Sornette, 2021. "Scale-, time- and asset-dependence of Hawkes process estimates on high frequency price changes," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 729-752, May.
    3. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    4. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    5. Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
    6. Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.
    7. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    10. Konstantinos Fokianos & Dag Tjøstheim, 2012. "Nonlinear Poisson autoregression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1205-1225, December.
    11. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    12. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    13. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    14. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    2. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    3. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    4. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    5. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    6. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    7. Kim, Gunhee & Choe, Geon Ho, 2019. "Limit properties of continuous self-exciting processes," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    8. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
    9. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    10. Benjamin Favetto, 2019. "The European intraday electricity market : a modeling based on the Hawkes process," Working Papers hal-02089289, HAL.
    11. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    12. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    13. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    14. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    15. Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
    16. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    17. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    19. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    20. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:161:y:2023:i:c:p:201-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.