IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v103y2021ics0140988321004874.html
   My bibliography  Save this article

Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting

Author

Listed:
  • Liu, Min
  • Lee, Chien-Chiang

Abstract

The launch of the China's Shanghai International Energy Exchange (INE) oil futures market in 2018 has shed new light on the role of China in international crude oil market. Understanding the dynamics of the newly arrived RMB denominated crude oil futures market not only facilitates the international market participants in risk management and hedging, but also provides helpful information for policy-makers, especially for those from emerging countries, to financialize its energy market, along with the currency internationalization and financial market liberalization. However, the literature on the China crude oil futures is quite scant compared with abundant literature on international benchmarks. In this regard, we make attempts to capture the dynamics of the China crude oil futures by: (1) adopting Markov switching analysis to uncover the regime switching of the INE crude oil futures market; (2) investigating the dynamic connectedness of INE, WTI, and Brent crude oil futures; (3) forecasting the realized volatility of INE crude oil futures. The results have shown that: (1) the outbreak of global pandemic at the beginning of 2020 has switched the crude oil futures market from a stable regime to a volatile regime; (2) the increasing financial uncertainty originated from the world, U.S., other advanced countries and emerging countries could significantly negatively affect the movement of crude oil futures. However, China suffers the least; (3) the dynamic conditional correlations between INE vs WTI, and INE vs Brent are high but lower and more volatile than that of WTI vs Brent; (4) Brent crude oil futures contribute to improving the accuracy of volatility forecasting of INE crude oil futures; and more importantly (5) we highly recommend carrying out volatility forecasting by incorporating intraday realized measures into mixed data sampling approach, in particular, when intraday transactions present extremely different behavior across the time.

Suggested Citation

  • Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:eneeco:v:103:y:2021:i:c:s0140988321004874
    DOI: 10.1016/j.eneco.2021.105622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321004874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    2. Jian Yang & David A. Bessler & David J. Leatham, 2001. "Asset storability and price discovery in commodity futures markets: A new look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 279-300, March.
    3. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    4. Wang, En-Ze & Lee, Chien-Chiang, 2022. "The impact of clean energy consumption on economic growth in China: Is environmental regulation a curse or a blessing?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 39-58.
    5. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    6. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    7. Lv, Fei & Yang, Chen & Fang, Libing, 2020. "Do the crude oil futures of the Shanghai International Energy Exchange improve asset allocation of Chinese petrochemical-related stocks?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    8. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    9. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    10. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    11. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
    12. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2016. "The impact of oil shocks on exchange rates: A Markov-switching approach," Energy Economics, Elsevier, vol. 54(C), pages 11-23.
    13. Zhou, Weijie & Pan, Jiao & Wu, Xiaoli, 2019. "Forecasting the realized volatility of CSI 300," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    14. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    15. Chen, Jinyu & Zhu, Xuehong & Zhong, Meirui, 2019. "Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis," Resources Policy, Elsevier, vol. 61(C), pages 489-500.
    16. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    17. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    18. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    19. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    20. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    21. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    22. Min Liu & Wei-Chong Choo & Chien-Chiang Lee, 2020. "The Response of the Stock Market to the Announcement of Global Pandemic," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(15), pages 3562-3577, December.
    23. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    24. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    25. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    26. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    27. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    28. M. Dacorogna & U. Mller & R. Olsen & O. Pictet, 2001. "Defining efficiency in heterogeneous markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 198-201.
    29. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    30. Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
    31. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    32. John Weirstrass Muteba Mwamba & Sutene Mwambetania Mwambi, 2021. "Assessing Market Risk in BRICS and Oil Markets: An Application of Markov Switching and Vine Copula," IJFS, MDPI, vol. 9(2), pages 1-22, May.
    33. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    34. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    35. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    36. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    37. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    38. Palao, Fernando & Pardo, Ángel & Roig, Marta, 2020. "Is the leadership of the Brent-WTI threatened by China’s new crude oil futures market?," Journal of Asian Economics, Elsevier, vol. 70(C).
    39. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang & Wang, Chang-song, 2021. "The impact of regional banks on environmental pollution: Evidence from China's city commercial banks," Energy Economics, Elsevier, vol. 102(C).
    40. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    41. Maryam Ahmadi & Niaz Bashiri Behmiri & Matteo Manera, 2020. "The theory of storage in the crude oil futures market, the role of financial conditions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1160-1175, July.
    42. Malin Song & Kuangnan Fang & Jing Zhang & Jianbin Wu, 2019. "The Co-movement Between Chinese Oil Market and Other Main International Oil Markets: A DCC-MGARCH Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1303-1318, December.
    43. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    44. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    45. Alfred Haug & Syed Basher & Perry Sadorsky, 2016. "The impact of oil price shocks on exchange rates: A non-linear smooth-transition approach," EcoMod2016 9226, EcoMod.
    46. Hou, Yang & Li, Steven, 2016. "Information transmission between U.S. and China index futures markets: An asymmetric DCC GARCH approach," Economic Modelling, Elsevier, vol. 52(PB), pages 884-897.
    47. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    48. Lee, Chien-Chiang & Wang, Chih-Wei, 2021. "Firms' cash reserve, financial constraint, and geopolitical risk," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    49. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    50. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    51. Jones, Paul M. & Olson, Eric, 2013. "The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model," Economics Letters, Elsevier, vol. 118(1), pages 33-37.
    52. Ehrmann, Michael & Ellison, Martin & Valla, Natacha, 2003. "Regime-dependent impulse response functions in a Markov-switching vector autoregression model," Economics Letters, Elsevier, vol. 78(3), pages 295-299, March.
    53. Huang, Xiaohong & Huang, Shupei, 2020. "Identifying the comovement of price between China's and international crude oil futures: A time-frequency perspective," International Review of Financial Analysis, Elsevier, vol. 72(C).
    54. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    55. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
    56. Dua, Pami & Tuteja, Divya, 2016. "Financial crises and dynamic linkages across international stock and currency markets," Economic Modelling, Elsevier, vol. 59(C), pages 249-261.
    57. Erhan Mugaloglu & Ali Yavuz Polat & Abdullah Dogan & Hasan Tekin, 2021. "Oil Price Shocks During the COVID-19 Pandemic - Evidence From United Kingdom Energy Stocks," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 2(1), pages 1-5.
    58. Min Liu & Chien-Chiang Lee & Wei-Chong Choo, 2021. "The role of high-frequency data in volatility forecasting: evidence from the China stock market," Applied Economics, Taylor & Francis Journals, vol. 53(22), pages 2500-2526, May.
    59. Baharumshah, Ahmad Zubaidi & Soon, Siew-Voon & Wohar, Mark E., 2017. "Markov-switching analysis of exchange rate pass-through: Perspective from Asian countries," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 245-257.
    60. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    61. Wen, Huwei & Lee, Chien-Chiang & Zhou, Fengxiu, 2021. "Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises," Energy Economics, Elsevier, vol. 94(C).
    62. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    63. AlKathiri, Nader & Al-Rashed, Yazeed & Doshi, Tilak K. & Murphy, Frederic H., 2017. "“Asian premium” or “North Atlantic discount”: Does geographical diversification in oil trade always impose costs?," Energy Economics, Elsevier, vol. 66(C), pages 411-420.
    64. Zaremba, Adam & Kizys, Renatas & Aharon, David Y. & Demir, Ender, 2020. "Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe," Finance Research Letters, Elsevier, vol. 35(C).
    65. Albulescu, Claudiu Tiberiu, 2021. "COVID-19 and the United States financial markets’ volatility," Finance Research Letters, Elsevier, vol. 38(C).
    66. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    67. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    68. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    69. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    70. Nazlioglu, Saban & Soytas, Ugur & Gupta, Rangan, 2015. "Oil prices and financial stress: A volatility spillover analysis," Energy Policy, Elsevier, vol. 82(C), pages 278-288.
    71. Wang, Feng & Ye, Xin & Wu, Congxin, 2019. "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    72. Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
    73. Reboredo, Juan C. & Uddin, Gazi Salah, 2016. "Do financial stress and policy uncertainty have an impact on the energy and metals markets? A quantile regression approach," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 284-298.
    74. Lee, Chien-Chiang & Wang, Chih-Wei & Ho, Shan-Ju & Wu, Ting-Pin, 2021. "The impact of natural disaster on energy consumption: International evidence," Energy Economics, Elsevier, vol. 97(C).
    75. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    76. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    77. Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
    78. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    2. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    3. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    4. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    5. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    6. Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
    7. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    8. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    9. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    10. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    11. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    12. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    13. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    14. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    15. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    16. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    17. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    18. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    19. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    20. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:103:y:2021:i:c:s0140988321004874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.