IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v30y2003i10p1161-1184.html
   My bibliography  Save this article

Automatic selective intervention in dynamic linear models

Author

Listed:
  • Manuel Salvador
  • Pilar Gargallo

Abstract

In this paper we propose an algorithm to carry out the monitoring and retrospective intervention process in Dynamic Linear Models, both selectively and automatically. The algorithm is illustrated by analysing several series taken from the literature, in which the proposed procedure is shown to perform better than the scheme proposed by West & Harrison (1997, Chapter 11).

Suggested Citation

  • Manuel Salvador & Pilar Gargallo, 2003. "Automatic selective intervention in dynamic linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1161-1184.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1161-1184
    DOI: 10.1080/0266476032000107178
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476032000107178
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476032000107178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    2. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
    3. P. J. Harrison, 1999. "Statistical process control and model monitoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(2), pages 273-292.
    4. Harvey, A. C., 1986. "The effects of seat belt legislation on British road casualities: A case study in structural modelling : A.C. Harvey and J. Durbing, Journal of the Royal Statistical Society, Series A 149 (1986) (in p," International Journal of Forecasting, Elsevier, vol. 2(4), pages 496-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    2. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    3. Victor Guerrero, 2005. "Restricted estimation of an adjusted time series: application to Mexico's industrial production index," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(2), pages 157-177.
    4. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    5. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    6. Beatriz Catalan & F. Javier Trivez, 2007. "Forecasting volatility in GARCH models with additive outliers," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 591-596.
    7. Amélie Charles & Olivier Darné, 2021. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(2), pages 419-442, May.
    8. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    9. Oesterreich Maciej, 2020. "On the Method of Identification of Atypical Observations in Time Series," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 1-16, June.
    10. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    12. Guanfu Liu & Xiaolong Pu & Lei Wang & Dongdong Xiang, 2015. "CUSUM chart for detecting range shifts when monotonicity of likelihood ratio is invalid," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1635-1644, August.
    13. Mark Hon & Soo-Keong Yong, 2004. "The price of owning a car: an analysis of auction quota premium in Singapore," Applied Economics, Taylor & Francis Journals, vol. 36(7), pages 739-751.
    14. Mira, José & Sánchez, María Jesús, 2004. "Prediction of deterministic functions: an application of a Gaussian kriging model to a time series outlier problem," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 477-491, January.
    15. George Kapetanios, 2004. "The Impact of Large Structural Shocks on Economic Relationships: Evidence from Oil Price Shocks," Working Papers 524, Queen Mary University of London, School of Economics and Finance.
    16. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    17. Yuehjen Shao & Yue-Fa Lin & Soe-Tsyr Yuan, 1999. "Integrated application of time series multiple-interventions analysis and knowledge-based reasoning," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 755-766.
    18. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    19. Salvador, Manuel & Gargallo, Pilar, 2004. "Automatic monitoring and intervention in multivariate dynamic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 401-431, October.
    20. Carnero, María Ángeles, 2003. "Detecting level shifts in the presence of conditional heteroscedasticity," DES - Working Papers. Statistics and Econometrics. WS ws036313, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1161-1184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.