IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v55y2003i2p409-422.html
   My bibliography  Save this article

Parameter estimation in general state-space models using particle methods

Author

Listed:
  • Arnaud Doucet
  • Vladislav Tadić

Abstract

No abstract is available for this item.

Suggested Citation

  • Arnaud Doucet & Vladislav Tadić, 2003. "Parameter estimation in general state-space models using particle methods," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 409-422, June.
  • Handle: RePEc:spr:aistmt:v:55:y:2003:i:2:p:409-422
    DOI: 10.1007/BF02530508
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02530508
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02530508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxin Liu & Ke Di & Hui Peng & Yu Liu, 2023. "A Tight Coupling Algorithm for Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS) Adaptive Integrated Navigation Based on Variational Bayesian," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    3. Wang, Guiming, 2007. "On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models," Ecological Modelling, Elsevier, vol. 200(3), pages 521-528.
    4. Jimmy Olsson & Johan Westerborn Alenlöv, 2020. "Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 545-576, April.
    5. Pedersen, M.W. & Thygesen, U.H. & Madsen, H., 2011. "Nonlinear tracking in a diffusion process with a Bayesian filter and the finite element method," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 280-290, January.
    6. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    7. Roncalli, Thierry & Weisang, Guillaume, 2011. "Tracking Problems, Hedge Fund Replication, and Alternative Beta," Journal of Financial Transformation, Capco Institute, vol. 31, pages 19-29.
    8. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    9. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    10. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    3. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    4. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    5. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    6. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    7. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    8. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    9. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2017. "Testing for volatility co-movement in bivariate stochastic volatility models," Documentos de Trabajo del ICAE 2017-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    10. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    11. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    12. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    13. Giovanni Gallipoli & Gianluigi Pelloni, 2013. "Macroeconomic Effects of Job Reallocations: A Survey," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 5(2), pages 127-176, December.
    14. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    15. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    16. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    17. Sandmann, G. & Koopman, Siem, 1996. "Maximum likelihood estimation of stochastic volatility models," LSE Research Online Documents on Economics 119161, London School of Economics and Political Science, LSE Library.
    18. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    19. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:55:y:2003:i:2:p:409-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.