The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
References listed on IDEAS
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2006.
"Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
- Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
- Nour Meddahi, 2002.
"A theoretical comparison between integrated and realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
- Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
- Jooyoung Jeon & James W. Taylor, 2013. "Using CAViaR Models with Implied Volatility for Value‐at‐Risk Estimation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 62-74, January.
- Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
- Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
- Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
- Soosung Hwang & Pedro L. Valls Pereira, 2006.
"Small sample properties of GARCH estimates and persistence,"
The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
- Hwang. S. & Pedro L. Valls Pereira, 2003. "Small Sample Properties of GARCH Estimates and Persistence," Finance Lab Working Papers flwp_48, Finance Lab, Insper Instituto de Ensino e Pesquisa.
- T. Bazhenov & D. Fantazzini, 2019.
"Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility,"
Russian Journal of Industrial Economics, MISIS, vol. 12(1).
- Bazhenov, Timofey & Fantazzini, Dean, 2019. "Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility," MPRA Paper 93544, University Library of Munich, Germany.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Oxana Malakhovskaya & Alexey Minabutdinov, 2014.
"Are commodity price shocks important? A Bayesian estimation of a DSGE model for Russia,"
International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 4(1/2), pages 148-180.
- Oxana A. Malakhovskaya & Alexey R. Minabutdinov, 2013. "Are commodity price shocks important? A Bayesian estimation of a DSGE model for Russia," HSE Working papers WP BRP 48/EC/2013, National Research University Higher School of Economics.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
- Carluccio Bianchi & Maria Elena De Giuli & Dean Fantazzini & Mario Maggi, 2011.
"Small sample properties of copula-GARCH modelling: a Monte Carlo study,"
Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1587-1597.
- Carluccio Bianchi & Dean Fantazzini & Maria Elena De Giuli & Mario Maggi, 2009. "Small Sample Properties of Copula-GARCH Modelling: A Monte Carlo Study," Quaderni di Dipartimento 093, University of Pavia, Department of Economics and Quantitative Methods.
- Bai, Jushan, 1997.
"Estimating Multiple Breaks One at a Time,"
Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
- Jushan Bai, 1995. "Estimating Multiple Breaks One at a Time," Working papers 95-18, Massachusetts Institute of Technology (MIT), Department of Economics.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
- Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011.
"The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
- Thomas Busch & Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets," CREATES Research Papers 2007-09, Department of Economics and Business Economics, Aarhus University.
- Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
- Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018.
"Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
- Marie Kratz & Yen H. Lok & Alexander J McNeil, 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," Papers 1611.04851, arXiv.org.
- Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
- Giovanni Barone‐Adesi & Marinela Adriana Finta & Chiara Legnazzi & Carlo Sala, 2019. "WTI crude oil option implied VaR and CVaR: An empirical application," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 552-563, September.
- Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Hartmann, Philipp, 2010. "Interaction of market and credit risk," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 697-702, April.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
- Jushan Bai & Pierre Perron, 1998.
"Estimating and Testing Linear Models with Multiple Structural Changes,"
Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Whitney K. Newey & Kenneth D. West, 1994.
"Automatic Lag Selection in Covariance Matrix Estimation,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
- Newey, W.K. & West, K.D., 1992. "Automatic Lag Selection in Covariance Matrix Estimation," Working papers 9220, Wisconsin Madison - Social Systems.
- Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
- Zeileis, Achim, 2006. "Object-oriented Computation of Sandwich Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i09).
- Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002.
"strucchange: An R Package for Testing for Structural Change in Linear Regression Models,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
- Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2001. "Strucchange: An R package for testing for structural change in linear regression models," Technical Reports 2001,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Ahoniemi, Katja & Lanne, Markku, 2013. "Overnight stock returns and realized volatility," International Journal of Forecasting, Elsevier, vol. 29(4), pages 592-604.
- Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
- Jushan Bai & Pierre Perron, 2003.
"Computation and analysis of multiple structural change models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
- BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
- Tom Doan, "undated". "MULTIPLEBREAKS: RATS procedure to perform multiple structural change analysis," Statistical Software Components RTS00138, Boston College Department of Economics.
- Tom Doan, "undated". "RATS programs to replicate examples of Bai-Perron procedure," Statistical Software Components RTZ00008, Boston College Department of Economics.
- Tom Doan, "undated". "BAIPERRON: RATS procedure to perform Bai-Perron Test for Multiple Structural Changes," Statistical Software Components RTS00013, Boston College Department of Economics.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
- Peter Christoffersen & Stefano Mazzotta, 2005. "The Accuracy of Density Forecasts from Foreign Exchange Options," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 578-605.
- Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
- Aganin, Artem & Peresetsky, Anatoly, 2018. "Volatility of ruble exchange rate: Oil and sanctions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 52, pages 5-21.
- Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
- Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- James Chong, 2004. "Value at risk from econometric models and implied from currency options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 603-620.
- Meddahi, N., 2001.
"A Theoretical Comparison Between Integrated and Realized Volatilies,"
Cahiers de recherche
2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Nour Meddahi, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilities," CIRANO Working Papers 2001s-71, CIRANO.
- MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- GIOT, Pierre, 2005. "Implied volatility indexes and daily Value at Risk models," LIDAM Reprints CORE 1840, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
- Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
- Birkelund, Ole Henrik & Haugom, Erik & Molnár, Peter & Opdal, Martin & Westgaard, Sjur, 2015. "A comparison of implied and realized volatility in the Nordic power forward market," Energy Economics, Elsevier, vol. 48(C), pages 288-294.
- Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
- Aganin, Artem, 2017. "Forecast comparison of volatility models on Russian stock market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 63-84.
- Pilar Corredor & Rafael Santamaria, 2004. "Forecasting volatility in the Spanish option market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(1), pages 1-11.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dean Fantazzini, 2024.
"Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets,"
JRFM, MDPI, vol. 17(6), pages 1-44, June.
- Fantazzini, Dean, 2024. "Adaptive Conformal Inference for computing Market Risk Measures: an Analysis with Four Thousands Crypto-Assets," MPRA Paper 121214, University Library of Munich, Germany.
- Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022.
"Forecasting oil prices with penalized regressions, variance risk premia and Google data,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
- Fantazzini, Dean & Kurbatskii, Alexey & Mironenkov, Alexey & Lycheva, Maria, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," MPRA Paper 118239, University Library of Munich, Germany.
- Makushkin, Mikhail & Lapshin, Victor, 2020. "Modelling tail dependencies between Russian and foreign stock markets: Application for market risk valuation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 30-52.
- Vladimir Pyrlik & Pavel Elizarov & Aleksandra Leonova, 2021. "Forecasting Realized Volatility Using Machine Learning and Mixed-Frequency Data (the Case of the Russian Stock Market)," CERGE-EI Working Papers wp713, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
- Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
- T. Bazhenov & D. Fantazzini, 2019.
"Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility,"
Russian Journal of Industrial Economics, MISIS, vol. 12(1).
- Bazhenov, Timofey & Fantazzini, Dean, 2019. "Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility," MPRA Paper 93544, University Library of Munich, Germany.
- Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
- Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
More about this item
Keywords
Forecasting; Value-at-Risk; Realized Volatility; Google Trends; Implied Volatility; GARCH; ARFIMA; HAR; Realized-GARCH;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CIS-2019-09-30 (Confederation of Independent States)
- NEP-FOR-2019-09-30 (Forecasting)
- NEP-ORE-2019-09-30 (Operations Research)
- NEP-RMG-2019-09-30 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:95992. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.