IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v17y2011i3p279-300n4.html
   My bibliography  Save this article

Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes

Author

Listed:
  • Kawai Reiichiro

    (Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK.)

  • Masuda Hiroki

    (Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan.)

Abstract

Exact yet simple simulation algorithms are developed for a wide class of Ornstein–Uhlenbeck processes with tempered stable stationary distribution of finite variation with the help of their exact transition probability between consecutive time points. Random elements involved can be divided into independent tempered stable and compound Poisson distributions, each of which can be simulated in the exact sense through acceptance-rejection sampling, respectively, with stable and gamma proposal distributions. We discuss various alternative simulation methods within our algorithms on the basis of acceptance rate in acceptance-rejection sampling for both high- and low-frequency sampling. Numerical results illustrate their advantage relative to the existing approximative simulation method based on infinite shot noise series representation.

Suggested Citation

  • Kawai Reiichiro & Masuda Hiroki, 2011. "Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes," Monte Carlo Methods and Applications, De Gruyter, vol. 17(3), pages 279-300, January.
  • Handle: RePEc:bpj:mcmeap:v:17:y:2011:i:3:p:279-300:n:4
    DOI: 10.1515/mcma.2011.012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2011.012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2011.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shibin Zhang & Xinsheng Zhang, 2008. "Exact Simulation of IG-OU Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 337-355, September.
    2. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    2. Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
    3. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    4. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    5. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
    8. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    9. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    10. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
    11. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    12. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    13. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    14. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
    15. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    16. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, August.
    17. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    18. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    19. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    20. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:17:y:2011:i:3:p:279-300:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.