IDEAS home Printed from https://ideas.repec.org/p/hst/ghsdps/gd08-033.html
   My bibliography  Save this paper

An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data

Author

Listed:
  • Hiroki Masuda
  • Takayuki Morimoto

Abstract

In Japanese stock markets, there are two kinds of breaks, i.e., nighttime and lunch break, where we have no trading, entailing inevitable increase of variance in estimating daily volatility via naive realized variance (RV). In order to perform a much more stabilized estimation, we are concerned here with a modification of the weighting technique of Hansen and Lunde (2005). As an empirical study, we estimate optimal weights in a certain sense for Japanese stock data listed on the Tokyo Stock Exchange. We found that, in most stocks appropriate use of the optimally weighted RV can lead to remarkably smaller estimation variance compared with naive RV, hence substantially to more accurate forecasting of daily volatility.

Suggested Citation

  • Hiroki Masuda & Takayuki Morimoto, 2009. "An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data," Global COE Hi-Stat Discussion Paper Series gd08-033, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hst:ghsdps:gd08-033
    as

    Download full text from publisher

    File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd08-033.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. repec:bla:ausecp:v:40:y:2001:i:4:p:567-80 is not listed on IDEAS
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    4. Giampiero M. Gallo, 2001. "Modelling the Impact of Overnight Surprises on Intra‐daily Volatility," Australian Economic Papers, Wiley Blackwell, vol. 40(4), pages 567-580, December.
    5. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    6. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    7. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    9. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    10. Valderio A. Reisen, 1994. "ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 335-350, May.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    13. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    2. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    4. Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.
    5. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    6. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    7. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    8. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    9. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    10. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    11. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    12. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    13. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    14. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    17. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    18. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    19. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    20. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Keywords

    high-frequency data; market microstructure noise; realized volatility; Japanese stock markets; variance of realized variance;
    All these keywords.

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd08-033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tatsuji Makino (email available below). General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.