Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econmod.2021.105699
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015.
"Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
- Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Manabu Asai & Michael McAleer, 2017.
"The impact of jumps and leverage in forecasting covolatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
- Asai, M. & McAleer, M.J., 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Econometric Institute Research Papers EI 2015-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Documentos de Trabajo del ICAE 2015-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Tinbergen Institute Discussion Papers 15-018/III, Tinbergen Institute.
- Stanislav Anatolyev & Nikita Kobotaev, 2018.
"Modeling and forecasting realized covariance matrices with accounting for leverage,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, Center for Economic and Financial Research (CEFIR).
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, New Economic School (NES).
- Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015.
"Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
- Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
- Asger Lunde & Neil Shephard & Kevin Sheppard, 2016. "Econometric Analysis of Vast Covariance Matrices Using Composite Realized Kernels and Their Application to Portfolio Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 504-518, October.
- K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006.
"Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
- Cappiello, Lorenzo & Engle, Robert F. & Sheppard, Kevin, 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 204, European Central Bank.
- Tom Doan, "undated". "RATS program to estimate various forms of DCC GARCH models," Statistical Software Components RTZ00174, Boston College Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017. "Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- Kawakatsu, Hiroyuki, 2006. "Matrix exponential GARCH," Journal of Econometrics, Elsevier, vol. 134(1), pages 95-128, September.
- Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
- Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010.
"Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
- Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2008.
"Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
- Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
- Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
- Oh, Dong Hwan & Patton, Andrew J., 2016.
"High-dimensional copula-based distributions with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
- Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
- repec:hal:journl:peer-00732537 is not listed on IDEAS
- Prateek Sharma & Vipul, 2016. "Economic benefits of using realized covariance forecasts in risk-based portfolios," Applied Economics, Taylor & Francis Journals, vol. 48(6), pages 502-516, February.
- František Čech & Jozef Baruník, 2017.
"On the Modelling and Forecasting of Multivariate Realized Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 181-206, March.
- Jozef Baruník & Frantisek Cech, 2014. "On the modelling and forecasting multivariate realized volatility: Generalized Heterogeneous Autoregressive (GHAR) model," Working Papers IES 2014/23, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2014.
- Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bucci, Andrea & Ciciretti, Vito, 2022. "Market regime detection via realized covariances," Economic Modelling, Elsevier, vol. 111(C).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024.
"Asymmetric Models for Realized Covariances,"
LIDAM Discussion Papers CORE
2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024.
"Asymmetric Models for Realized Covariances,"
LIDAM Discussion Papers CORE
2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
- Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
- Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
- Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
- Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020.
"Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
- Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks," Working Papers 201951, University of Pretoria, Department of Economics.
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014.
"The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
More about this item
Keywords
Realized covariance matrix; Volatility forecast; Volatility timing strategy; Multivariate heterogeneous autoregressive model; Asymmetric volatility;All these keywords.
JEL classification:
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:106:y:2022:i:c:s0264999321002881. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.