IDEAS home Printed from https://ideas.repec.org/p/ecm/latm04/198.html
   My bibliography  Save this paper

How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations

Author

Listed:
  • Soosung Hwang
  • Steve E. Satchell & Pedro L. Valls Pereira

Abstract

We introduce SV models with Markov regime changing state equation (SVMRS) to investigate the important properties of volatility, high persistence and smoothness. With the quasi-ML approach proposed in our study, we showed that volatility is far less persistent and smooth than the GARCH or SV models suggest

Suggested Citation

  • Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Econometric Society 2004 Latin American Meetings 198, Econometric Society.
  • Handle: RePEc:ecm:latm04:198
    as

    Download full text from publisher

    File URL: http://www.ibmec.br/sub/SP/download.php?recid=2734
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    4. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    5. Dan Ben-David & David H. Papell, 1998. "Slowdowns And Meltdowns: Postwar Growth Evidence From 74 Countries," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 561-571, November.
    6. repec:cep:stiecm:/1993/268 is not listed on IDEAS
    7. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    8. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    9. Smith, Daniel R, 2002. "Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 183-197, April.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    13. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    14. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
    15. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    16. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    17. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    18. Soosung Hwang & Steve Satchell, 2005. "GARCH model with cross-sectional volatility: GARCHX models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(3), pages 203-216.
    19. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
    20. Carriquiry, Alicia L. & Breidt, F. J., 1996. "Improved Quasi-Maximum Likelihood for Stochastic Volatility Models," Staff General Research Papers Archive 1035, Iowa State University, Department of Economics.
    21. Breidt, F. J. & Carriquiry, Alicia L., 1996. "Improved Quasi-Maximum Likelihood for Stochastic Volatility Models," Staff General Research Papers Archive 1143, Iowa State University, Department of Economics.
    22. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    23. Goodwin, Thomas H, 1993. "Business-Cycle Analysis with a Markov-Switching Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 331-339, July.
    24. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    25. Andrew C Harvey & N.G. Shephard, 1993. "Estimation and Testing of Stochastic Variance Models," STICERD - Econometrics Paper Series 268, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    26. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    27. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    28. Raúl Susmel & Madhu Kalimipalli, 2001. "Regime-Switching Stochastic Volatility and Short-Term Interest Rates," CEMA Working Papers: Serie Documentos de Trabajo. 197, Universidad del CEMA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Peguin-Feissolle & Gilles Dufrénot & Dominique Guegan, 2006. "Changing-regime volatility : A fractionally integrated SETAR model," Working Papers halshs-00410540, HAL.
    2. He, Xin-Jiang & Zhu, Song-Ping, 2016. "An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 77-85.
    3. Łukasz Kwiatkowski, 2010. "Markov Switching In-Mean Effect. Bayesian Analysis in Stochastic Volatility Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(1), pages 59-94, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2007. "How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 1002-1024, June.
    2. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    4. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    5. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.
    6. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    7. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    8. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    9. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    10. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    11. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
    12. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    13. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    14. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    15. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    16. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    18. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    19. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    20. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.

    More about this item

    Keywords

    Stochastic Volatility; Markov Switching; Persistence;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.