IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.02925.html
   My bibliography  Save this paper

Implied volatility smile dynamics in the presence of jumps

Author

Listed:
  • Martin Magris
  • Perttu Barholm
  • Juho Kanniainen

Abstract

The main purpose of this work is to examine the behavior of the implied volatility smiles around jumps, contributing to the literature with a high-frequency analysis of the smile dynamics based on intra-day option data. From our high-frequency SPX S\&P500 index option dataset, we utilize the first three principal components to characterize the implied volatility smile and analyze its dynamics by the distribution of the scores' means and variances and other statistics for the first hour of the day, in scenarios where jumps are detected and not. Our analyses clearly suggest that changes in the volatility smiles have abnormal properties around jumps compared with the absence of jumps, regardless of maturity and type of the option.

Suggested Citation

  • Martin Magris & Perttu Barholm & Juho Kanniainen, 2017. "Implied volatility smile dynamics in the presence of jumps," Papers 1711.02925, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1711.02925
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.02925
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Skiadopoulos, 2001. "Volatility Smile Consistent Option Models: A Survey," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 403-437.
    2. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    3. Heynen, Ronald & Kemna, Angelien & Vorst, Ton, 1994. "Analysis of the Term Structure of Implied Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 31-56, March.
    4. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    5. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    6. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    7. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    8. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    9. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    10. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    11. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    12. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    13. P. Balland, 2002. "Deterministic implied volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 31-44.
    14. George Skiadopoulos & Stewart Hodges & Les Clewlow, 2000. "The Dynamics of the S&P 500 Implied Volatility Surface," Review of Derivatives Research, Springer, vol. 3(3), pages 263-282, October.
    15. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    16. Panigirtzoglou, Nikolaos & Skiadopoulos, George, 2004. "A new approach to modeling the dynamics of implied distributions: Theory and evidence from the S&P 500 options," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1499-1520, July.
    17. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    18. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    19. Yingzi Zhu & Marco Avellaneda, 1997. "An E-ARCH model for the term structure of implied volatility of FX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(2), pages 81-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    3. Barr, Kanlaya Jintanakul, 2009. "The implied volatility bias and option smile: is there a simple explanation?," ISU General Staff Papers 200901010800002026, Iowa State University, Department of Economics.
    4. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Georgios Chalamandaris & Andrianos Tsekrekos, 2013. "Explanatory Factors and Causality in the Dynamics of Volatility Surfaces Implied from OTC Asian–Pacific Currency Options," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 327-358, March.
    6. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2009. "Common Factors and Causality in the Dynamics of Implied Volatility Surfaces: Evidence from the FX OTC Market," The Journal of Economic Asymmetries, Elsevier, vol. 6(1), pages 49-74.
    8. Ren-Raw Chen & Oded Palmon, 2005. "A Non-Parametric Option Pricing Model: Theory and Empirical Evidence," Review of Quantitative Finance and Accounting, Springer, vol. 24(2), pages 115-134, January.
    9. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    10. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    13. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    14. Ederington, Louis & Guan, Wei, 2005. "The information frown in option prices," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1429-1457, June.
    15. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    16. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    17. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    18. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    19. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    20. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2011. "Option-Implied Measures of Equity Risk," Review of Finance, European Finance Association, vol. 16(2), pages 385-428.
    21. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.02925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.