IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202417.html
   My bibliography  Save this paper

Robust High-Dimensional Time-Varying Coefficient Estimation

Author

Listed:
  • Donggyu Kim

    (Department of Economics, University of California Riverside)

  • Minseok Shin

Abstract

In this paper, we develop a novel high-dimensional coefficient estimation procedure based on high-frequency data. Unlike usual high-dimensional regression procedure such as LASSO, we additionally handle the heavy-tailedness of high-frequency observations as well as time variations of coefficient processes. Specifically, we employ Huber loss and truncation scheme to handle heavy-tailed observations, while â„“1-regularization is adopted to overcome the curse of dimensionality. To account for the time-varying coefficient, we estimate local coefficients which are biased due to the â„“1-regularization. Thus, when estimating integrated coefficients, we propose a debiasing scheme to enjoy the law of large number property and employ a thresholding scheme to further accommodate the sparsity of the coefficients. We call this Robust thrEsholding Debiased LASSO (RED-LASSO) estimator. We show that the RED LASSO estimator can achieve a near-optimal convergence rate. In the empirical study, we apply the RED-LASSO procedure to the high-dimensional integrated coefficient estimation using high-frequency trading data.

Suggested Citation

  • Donggyu Kim & Minseok Shin, 2024. "Robust High-Dimensional Time-Varying Coefficient Estimation," Working Papers 202417, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:202417
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202417.pdf
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.