Robust High-Dimensional Time-Varying Coefficient Estimation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wayne E. Ferson & Campbell R. Harvey, 1999.
"Conditioning Variables and the Cross Section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 54(4), pages 1325-1360, August.
- Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross-Section of Stock Returns," NBER Working Papers 7009, National Bureau of Economic Research, Inc.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008.
"In Search of Distress Risk,"
Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
- Campbell, John Y. & Hilscher, Jens & Szilagyi, Jan, 2005. "In search of distress risk," Discussion Paper Series 1: Economic Studies 2005,27, Deutsche Bundesbank.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2005. "In Searach of Distress Risk," Harvard Institute of Economic Research Working Papers 2081, Harvard - Institute of Economic Research.
- Szilagyi, Jan & Hilscher, Jens & Campbell, John, 2008. "In Search of Distress Risk," Scholarly Articles 3199070, Harvard University Department of Economics.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2006. "In Search of Distress Risk," NBER Working Papers 12362, National Bureau of Economic Research, Inc.
- Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Ginger Wu, 2006.
"Realized Beta: Persistence and Predictability,"
Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 1-39,
Emerald Group Publishing Limited.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2003. "Realized Beta: Persistence and Predictability," PIER Working Paper Archive 04-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Mar 2004.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Wu, Jin, 2004. "Realized beta: Persistence and predictability," CFS Working Paper Series 2004/16, Center for Financial Studies (CFS).
- Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
- John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
- Engle, Robert F. & Gallo, Giampiero M., 2006.
"A multiple indicators model for volatility using intra-daily data,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
- Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
- Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Aït-Sahalia, Yacine & Kalnina, Ilze & Xiu, Dacheng, 2020. "High-frequency factor models and regressions," Journal of Econometrics, Elsevier, vol. 216(1), pages 86-105.
- Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
- Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
- Jianqing Fan & Donggyu Kim, 2018. "Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1268-1283, July.
- Yacine Aït-Sahalia & Dacheng Xiu, 2019.
"Principal Component Analysis of High-Frequency Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
- Yacine Aït-Sahalia & Dacheng Xiu, 2015. "Principal Component Analysis of High Frequency Data," NBER Working Papers 21584, National Bureau of Economic Research, Inc.
- Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Li, Jia & Todorov, Viktor & Tauchen, George, 2017. "Adaptive estimation of continuous-time regression models using high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 36-47.
- John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
- Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
- Mao, Guangyu & Zhang, Zhengjun, 2018. "Stochastic tail index model for high frequency financial data with Bayesian analysis," Journal of Econometrics, Elsevier, vol. 205(2), pages 470-487.
- Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
- William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Qiang Sun & Wen-Xin Zhou & Jianqing Fan, 2020. "Adaptive Huber Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 254-265, January.
- Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
- Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Donggyu Kim & Minseok Shin, 2024. "Nonconvex High-Dimensional Time-Varying Coefficient Estimation for Noisy High-Frequency Observations with a Factor Structure," Working Papers 202418, University of California at Riverside, Department of Economics.
- Donggyu Kim, 2024. "High-Dimensional Time-Varying Coefficient Estimation," Working Papers 202416, University of California at Riverside, Department of Economics.
- Jianqing Fan & Donggyu Kim & Minseok Shin & Yazhen Wang, 2024. "Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data," Working Papers 202415, University of California at Riverside, Department of Economics.
- Dohyun Chun & Donggyu Kim, 2022.
"State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
- Dohyun Chun & Donggyu Kim, 2021. "State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data," Papers 2102.13404, arXiv.org.
- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Jianqing Fan & Donggyu Kim & Minseok Shin, 2024. "Adaptive Robust Large Volatility Matrix Estimation Based on High-Frequency Financial Data," Working Papers 202419, University of California at Riverside, Department of Economics.
- Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
- Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, September.
- Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
- Chiah, Mardy & Long, Huaigang & Zaremba, Adam & Umar, Zaghum, 2023. "Trade competitiveness and the aggregate returns in global stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
- Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022.
"Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency,"
Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"Estimation of large dimensional conditional factor models in finance,"
Working Papers
unige:125031, University of Geneva, Geneva School of Economics and Management.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2019. "Estimation of Large Dimensional Conditional Factor Models in Finance," Swiss Finance Institute Research Paper Series 19-46, Swiss Finance Institute.
- De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2023.
"Overnight GARCH-Itô Volatility Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2021. "Overnight GARCH-It\^o Volatility Models," Papers 2102.13467, arXiv.org, revised Jun 2022.
- Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- Virk, Nader Shahzad & Butt, Hilal Anwar, 2022. "Asset pricing anomalies: Liquidity risk hedgers or liquidity risk spreaders?," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Donggyu Kim, 2021. "Exponential GARCH-Ito Volatility Models," Papers 2111.04267, arXiv.org.
- Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
- Assoe, Kodjovi & Attig, Najah & Sy, Oumar, 2024. "The battle of factors," Global Finance Journal, Elsevier, vol. 62(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-01-06 (Econometrics)
- NEP-ETS-2025-01-06 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.