IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2011-044.html
   My bibliography  Save this paper

Predicting bid-ask spreads using long memory autoregressive conditional poisson models

Author

Listed:
  • Groß-Klußmann, Axel
  • Hautsch, Nikolaus

Abstract

We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of bid-ask spreads like the strong autocorrelation and discreteness of observations. We discuss theoretical properties of LMACP models and evaluate rolling window forecasts of quoted bid-ask spreads for stocks traded at NYSE and NASDAQ. We show that Poisson time series models significantly outperform forecasts from ARMA, ARFIMA, ACD and FIACD models. The economic significance of our results is supported by the evaluation of a trade schedule. Scheduling trades according to spread forecasts we realize cost savings of up to 13 % of spread transaction costs.

Suggested Citation

  • Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2011-044
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56734/1/664288987.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Intra-daily Volume Modeling and Prediction for Algorithmic Trading," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 489-518, Summer.
    3. Griffiths, Mark D. & Smith, Brian F. & Turnbull, D. Alasdair S. & White, Robert W., 2000. "The costs and determinants of order aggressiveness," Journal of Financial Economics, Elsevier, vol. 56(1), pages 65-88, April.
    4. Engle, Robert F. & Patton, Andrew J., 2004. "Impacts of trades in an error-correction model of quote prices," Journal of Financial Markets, Elsevier, vol. 7(1), pages 1-25, January.
    5. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    6. Chung, Kee H. & Van Ness, Bonnie F. & Van Ness, Robert A., 1999. "Limit orders and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 53(2), pages 255-287, August.
    7. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 413-449.
    8. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    9. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    10. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    11. Anthony D. Hall & Nikolaus Hautsch, 2008. "Order aggressiveness and order book dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 133-165, Springer.
    12. Copeland, Thomas E & Galai, Dan, 1983. "Information Effects on the Bid-Ask Spread," Journal of Finance, American Finance Association, vol. 38(5), pages 1457-1469, December.
    13. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    14. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    15. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    16. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    17. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    18. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    19. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    20. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 2-25.
    21. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2009. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," SFB 649 Discussion Papers 2009-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Glosten, Lawrence R, 1987. "Components of the Bid-Ask Spread and the Statistical Properties of Transaction Prices," Journal of Finance, American Finance Association, vol. 42(5), pages 1293-1307, December.
    23. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    24. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    25. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    26. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    27. Taylor, Nicholas, 2002. "The economic and statistical significance of spread forecasts: Evidence from the London Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 26(4), pages 795-818, April.
    28. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    29. Ranaldo, Angelo, 2004. "Order aggressiveness in limit order book markets," Journal of Financial Markets, Elsevier, vol. 7(1), pages 53-74, January.
    30. Anand, Amber & Chakravarty, Sugato & Martell, Terrence, 2005. "Empirical evidence on the evolution of liquidity: Choice of market versus limit orders by informed and uninformed traders," Journal of Financial Markets, Elsevier, vol. 8(3), pages 288-308, August.
    31. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    32. George, Thomas J & Kaul, Gautam & Nimalendran, M, 1991. "Estimation of the Bid-Ask Spread and Its Components: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 623-656.
    33. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    34. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    35. Harris, Lawrence & Hasbrouck, Joel, 1996. "Market vs. Limit Orders: The SuperDOT Evidence on Order Submission Strategy," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(2), pages 213-231, June.
    36. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    37. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    38. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    39. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    40. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    41. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    42. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    43. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    44. Zaffaroni, Paolo, 2004. "Stationarity And Memory Of Arch(∞) Models," Econometric Theory, Cambridge University Press, vol. 20(1), pages 147-160, February.
    45. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    46. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    47. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    48. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    49. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    50. Chan, K C & Christie, William G & Schultz, Paul H, 1995. "Market Structure and the Intraday Pattern of Bid-Ask Spreads for NASDAQ Securities," The Journal of Business, University of Chicago Press, vol. 68(1), pages 35-60, January.
    51. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    52. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    53. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    54. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    55. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    56. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    57. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.
    58. Menelaos Karanasos & Zacharias Psaradakis & Martin Sola, 2004. "On the Autocorrelation Properties of Long‐Memory GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 265-282, March.
    59. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    60. Bollen, Nicolas P. B. & Smith, Tom & Whaley, Robert E., 2004. "Modeling the bid/ask spread: measuring the inventory-holding premium," Journal of Financial Economics, Elsevier, vol. 72(1), pages 97-141, April.
    61. Roberto Pascual & David Veredas, 2009. "What pieces of limit order book information matter in explaining order choice by patient and impatient traders?," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 527-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    2. repec:hum:wpaper:sfb649dp2011-083 is not listed on IDEAS
    3. Carl Chiarella & Xue-Zhong He & Lei Shi & Lijian Wei, 2017. "A behavioural model of investor sentiment in limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 71-86, January.
    4. Horst, Ulrich & Kupper, Michael & Macrina, Andrea & Mainberger, Christoph, 2011. "Continuous equilibrium under base preferences and attainable initial endowments," SFB 649 Discussion Papers 2011-082, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    6. repec:hum:wpaper:sfb649dp2011-082 is not listed on IDEAS
    7. Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Christos Kollias & Stephanos Papadamou & Costas Siriopoulos, 2013. "European Markets’ Reactions to Exogenous Shocks: A High Frequency Data Analysis of the 2005 London Bombings," IJFS, MDPI, vol. 1(4), pages 1-14, November.
    9. Fiocco, Raffaele, 2011. "Competition and regulation in a differentiated good market," SFB 649 Discussion Papers 2011-084, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    11. Cattivelli, Luca & Pirino, Davide, 2019. "A SHARP model of bid–ask spread forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1211-1225.
    12. Arifovic, Jasmina & He, Xue-zhong & Wei, Lijian, 2022. "Machine learning and speed in high-frequency trading," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    13. Anne Michaels & Michael Grüning, 2017. "Relationship of corporate social responsibility disclosure on information asymmetry and the cost of capital," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 28(3), pages 251-274, October.
    14. Bagnara, Matteo & Jappelli, Ruggero, 2022. "Liquidity derivatives," SAFE Working Paper Series 358, Leibniz Institute for Financial Research SAFE.
    15. repec:hum:wpaper:sfb649dp2011-084 is not listed on IDEAS
    16. Gianbiagio Curato & Fabrizio Lillo, 2013. "Modeling the coupled return-spread high frequency dynamics of large tick assets," Papers 1310.4539, arXiv.org.
    17. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
    2. PASCUAL, Roberto & VEREDAS, David, 2006. "Does the open limit order book matter in explaining long run volatility ?," LIDAM Discussion Papers CORE 2006110, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Roberto Pascual & David Veredas, 2010. "Does the Open Limit Order Book Matter in Explaining Informational Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 57-87, Winter.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    6. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    7. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43, March.
    8. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    9. Cattivelli, Luca & Pirino, Davide, 2019. "A SHARP model of bid–ask spread forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1211-1225.
    10. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    11. Lo, Ingrid & Sapp, Stephen G., 2010. "Order aggressiveness and quantity: How are they determined in a limit order market?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(3), pages 213-237, July.
    12. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    13. Anthony D. Hall & Nikolaus Hautsch, 2004. "A Continuous-Time Measurement of the Buy-Sell Pressure in a Limit Order Book Market," FRU Working Papers 2004/03, University of Copenhagen. Department of Economics. Finance Research Unit.
    14. Kalaitzoglou, Iordanis Angelos & Ibrahim, Boulis Maher, 2023. "Market conditions and order-type preference," International Review of Financial Analysis, Elsevier, vol. 87(C).
    15. G. Wuyts, 2007. "Stock Market Liquidity.Determinants and Implications," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 279-316.
    16. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4, July-Dece.
    17. Cebiroglu, Gökhan & Hautsch, Nikolaus & Horst, Ulrich, 2014. "Order exposure and liquidity coordination: Does hidden liquidity harm price efficiency?," CFS Working Paper Series 468, Center for Financial Studies (CFS).
    18. Lo, Danny K. & Hall, Anthony D., 2015. "Resiliency of the limit order book," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 222-244.
    19. Pascual, Roberto, 1999. "How does liquidity behave? A multidimensional analysis of NYSE stocks," DEE - Working Papers. Business Economics. WB 6433, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    20. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    21. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2013, January-A.

    More about this item

    Keywords

    bid-ask spreads; forecasting; high-frequency data; stock market liquidity; count data time series; long memory Poisson autoregression;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2011-044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.