IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/31423.html
   My bibliography  Save this paper

Likelihood-based inference for a class of multivariate diffusions with unobserved paths

Author

Listed:
  • Kalogeropoulos, Konstantinos

Abstract

This paper presents a Markov chain Monte Carlo algorithm for a class of multivariate diffusion models with unobserved paths. This class is of high practical interest as it includes most diffusion driven stochastic volatility models. The algorithm is based on a data augmentation scheme where the paths are treated as missing data. However, unless these paths are transformed so that the dominating measure is independent of any parameters, the algorithm becomes reducible. The methodology developed in Roberts and Stramer (2001 Biometrika 88(3):603-621) circumvents the problem for scalar diffusions. We extend this framework to the class of models of this paper by introducing an appropriate reparametrisation of the likelihood that can be used to construct an irreducible data augmentation scheme. Practical implementation issues are considered and the methodology is applied to simulated data from the Heston model.

Suggested Citation

  • Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:31423
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/31423/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    7. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    8. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    9. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    10. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    11. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    12. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    2. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    3. Konstantinos Kalogeropoulos & Petros Dellaportas & Gareth O. Roberts, 2007. "Likelihood-based inference for correlated diffusions," Papers 0711.1595, arXiv.org.
    4. Huang Xiao, 2013. "Quasi-maximum likelihood estimation of multivariate diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 179-197, April.
    5. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    6. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    7. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    8. Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    2. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    3. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    4. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    5. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    6. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    7. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    8. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    9. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    10. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
    11. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    12. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    13. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    14. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    15. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    16. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.
    17. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    18. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    19. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," Economics Series Working Papers 389, University of Oxford, Department of Economics.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:31423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.