Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2023.105575
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
- Guillaume Gaetan Martinet & Michael McAleer, 2018.
"On the invertibility of EGARCH(p, q),"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.
- Martinet, G.G. & McAleer, M.J., 2014. "On the Invertibility of EGARCH," Econometric Institute Research Papers EI2014-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Guillaume Gaetan Martinet & Michael McAleer, 2015. "On the Invertibility of EGARCH(p,q)," Tinbergen Institute Discussion Papers 15-022/III, Tinbergen Institute.
- Guillaume Gaetan Martinet & Michael McAleer, 2015. "On the Invertibility of EGARCH(p,q)," Documentos de Trabajo del ICAE 2015-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Guillaume Gaetan Martinet & Michael McAleer, 2014. "On the Invertibility of EGARCH," Tinbergen Institute Discussion Papers 14-096/III, Tinbergen Institute.
- Martinet, G.G. & McAleer, M.J., 2015. "On the Invertibility of EGARCH(p,q)," Econometric Institute Research Papers EI 2015-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Guillaume Gaetan Martinet & Michael McAleer, 2014. "On the Invertibility of EGARCH," Documentos de Trabajo del ICAE 2014-28, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Guillaume Gaetan Martinet & Michael McAleer, 2014. "On the Invertibility of EGARCH," Working Papers in Economics 14/21, University of Canterbury, Department of Economics and Finance.
- Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
- Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011.
"A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
- Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
- Drew Creal & Siem Jan Koopman & André Lucas, 2010. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Tinbergen Institute Discussion Papers 10-032/2, Tinbergen Institute.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- White,Halbert, 1996.
"Estimation, Inference and Specification Analysis,"
Cambridge Books,
Cambridge University Press, number 9780521574464, January.
- White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805, November.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Andrew Harvey & Alessandra Luati, 2014.
"Filtering With Heavy Tails,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
- Harvey, A. & Luati, A., 2012. "Filtering with heavy tails," Cambridge Working Papers in Economics 1255, Faculty of Economics, University of Cambridge.
- Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
- Geweke, John & Amisano, Gianni, 2011.
"Optimal prediction pools,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
- John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
- Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Olivier Wintenberger, 2013.
"Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
- Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
- Shephard, Neil, 1993. "Distribution of the ML Estimator of an MA(1) and a local level model," Econometric Theory, Cambridge University Press, vol. 9(3), pages 377-401, June.
- Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
- Leopoldo Catania, 2021. "Dynamic Adaptive Mixture Models with an Application to Volatility and Risk," Journal of Financial Econometrics, Oxford University Press, vol. 19(4), pages 531-564.
- Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011.
"Modelling Electricity Prices: International Evidence,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
- Villaplana Conde, Pablo, 2002. "Modeling electricity prices: international evidence," UC3M Working papers. Economics we022708, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Michele Caivano & Andrew Harvey, 2014.
"Time-series models with an EGB2 conditional distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
- M. Caivano & A. Harvey, 2013. "Time series models with an EGB2 conditional distribution," Cambridge Working Papers in Economics 1325, Faculty of Economics, University of Cambridge.
- Michele Caivano & Andrew Harvey, 2014. "Time series models with an EGB2 conditional distribution," Temi di discussione (Economic working papers) 947, Bank of Italy, Economic Research and International Relations Area.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Guodong Li & Qianqian Zhu & Zhao Liu & Wai Keung Li, 2017. "On Mixture Double Autoregressive Time Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 306-317, April.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Blasques, F. & van Brummelen, J. & Gorgi, P. & Koopman, S.J., 2024.
"A robust Beveridge–Nelson decomposition using a score-driven approach with an application,"
Economics Letters, Elsevier, vol. 236(C).
- Francisco Blasques & Janneke van Brummelen & Paolo Gorgi & Siem Jan Koopman, 2024. "A robust Beveridge-Nelson decomposition using a score-driven approach with an application," Tinbergen Institute Discussion Papers 24-003/III, Tinbergen Institute.
- Giuseppe Buccheri & Fulvio Corsi & Emilija Dzuverovic, 2024. "From rotational to scalar invariance: Enhancing identifiability in score-driven factor models," Papers 2412.01367, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Blasques, F. & van Brummelen, J. & Gorgi, P. & Koopman, S.J., 2024.
"A robust Beveridge–Nelson decomposition using a score-driven approach with an application,"
Economics Letters, Elsevier, vol. 236(C).
- Francisco Blasques & Janneke van Brummelen & Paolo Gorgi & Siem Jan Koopman, 2024. "A robust Beveridge-Nelson decomposition using a score-driven approach with an application," Tinbergen Institute Discussion Papers 24-003/III, Tinbergen Institute.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016.
"Spillover dynamics for systemic risk measurement using spatial financial time series models,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2014. "Spillover dynamics for systemic risk measurement using spatial financial time series models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100632, Verein für Socialpolitik / German Economic Association.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas & Julia Schaumburg, 2014. "Spillover Dynamics for Systemic Risk Measurement using Spatial Financial Time Series Models," Tinbergen Institute Discussion Papers 14-107/III, Tinbergen Institute.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
- Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
- Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022.
"A Model of the Fed's View on Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
- Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2017. "A Model of the Fed’s View on Inflation," Economic Research Papers 269087, University of Warwick - Department of Economics.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2020. "A Model of the Fed's View on Inflation," Papers 2006.14110, arXiv.org.
- Thomas Hasenzagl & Fillipo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2018. "A model of the FED's view on inflation," Working Papers hal-03458456, HAL.
- Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2017. "A Model of the Fed’s View on Inflation," The Warwick Economics Research Paper Series (TWERPS) 1145, University of Warwick, Department of Economics.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2018. "A model of FED'S view on inflation," Documents de Travail de l'OFCE 2018-03, Observatoire Francais des Conjonctures Economiques (OFCE).
- Reichlin, Lucrezia & Hasenzagl, Thomas & Pellegrino, Filippo & Ricco, Giovanni, 2018. "A Model of the Fed's View on Inflation," CEPR Discussion Papers 12564, C.E.P.R. Discussion Papers.
- Michele Caivano & Andrew Harvey, 2014.
"Time-series models with an EGB2 conditional distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
- M. Caivano & A. Harvey, 2013. "Time series models with an EGB2 conditional distribution," Cambridge Working Papers in Economics 1325, Faculty of Economics, University of Cambridge.
- Michele Caivano & Andrew Harvey, 2014. "Time series models with an EGB2 conditional distribution," Temi di discussione (Economic working papers) 947, Bank of Italy, Economic Research and International Relations Area.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023.
"Exact Likelihood for Inverse Gamma Stochastic Volatility Models,"
GRIPS Discussion Papers
23-07, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 24-03, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," Working Paper series 23-11, Rimini Centre for Economic Analysis.
- Luis Uzeda, 2022.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53,
Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
- Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
- Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
- repec:wrk:wrkemf:13 is not listed on IDEAS
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
More about this item
Keywords
Time-varying parameters; Asymmetric and heavy-tailed distributions; Robust filter; Invertibility; Consistency; Asymptotic normality;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.