IDEAS home Printed from https://ideas.repec.org/p/ver/wpaper/07-2003.html
   My bibliography  Save this paper

MCMC Bayesian Estimation of a Skew-GED Stochastic Volatily Model

Author

Listed:
  • Nunzio Cappuccio

    (Department of Economics (University of Padova))

  • Diego Lubian

    (University of Economics (University of Verona))

  • Davide Raggi

    (Department of Statistics (University of Padova))

Abstract

In this paper we present a stochastic volatility model assuming that the return shock has a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry and heavy tails in the conditional distribution of returns. The Skew-GED distribution nests both the GED, the Skew-normal and the normal densities as special cases so that specification tests are easily performed. Inference is conducted under a Bayesian framework using Markov Chain MonteCarlo methods for computing the posterior distributions of the parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.

Suggested Citation

  • Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2003. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatily Model," Working Papers 07/2003, University of Verona, Department of Economics.
  • Handle: RePEc:ver:wpaper:07/2003
    as

    Download full text from publisher

    File URL: http://dse.univr.it/RePEc/ver/Wpaper/WP7.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    2. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    3. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    4. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    5. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    6. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    7. Neil Shephard & Siddhartha Chib, 1998. "Markov Chain Monte Carlo methods for Generalized Stochastic Volatility Models," Economics Series Working Papers 1998-W21, University of Oxford, Department of Economics.
    8. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    9. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaufmann Sylvia & Scheicher Martin, 2006. "A Switching ARCH Model for the German DAX Index," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(4), pages 1-37, December.
    2. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    3. repec:cte:wsrepe:ws142618 is not listed on IDEAS
    4. repec:cte:wsrepe:ws131110 is not listed on IDEAS
    5. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    6. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    7. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    8. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    9. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    10. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    11. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    12. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    13. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    14. Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    16. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
    2. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    3. Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2006. "Investigating asymmetry in US stock market indexes: evidence from a stochastic volatility model," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 479-490.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    6. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.
    7. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.

    More about this item

    Keywords

    Stochastic volatility; Markov Chain MonteCarlo; Skewness; Heavy tails; Bayesian inference; Metropolis-Hastings sampling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ver:wpaper:07/2003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Reiter (email available below). General contact details of provider: https://edirc.repec.org/data/isverit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.