Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Z. Merrick Li & Oliver Linton, 2022.
"A ReMeDI for Microstructure Noise,"
Econometrica, Econometric Society, vol. 90(1), pages 367-389, January.
- Merrick Li, Z. & Linton, O., 2019. "A ReMeDI for Microstructure Noise," Cambridge Working Papers in Economics 1908, Faculty of Economics, University of Cambridge.
- Olivier Ledoit & Michael Wolf, 2022. "The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation [Design-Free Estimation of Variance Matrices]," Journal of Financial Econometrics, Oxford University Press, vol. 20(1), pages 187-218.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021.
"Realized volatility forecasting: Robustness to measurement errors,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
- Fabrizio Cipollini & Giampiero M. Gallo & Edoardo Otranto, 2019. "Realized Volatility Forecasting: Robustness to Measurement Errors," Econometrics Working Papers Archive 2019_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Matteo Barigozzi & Marc Hallin, 2016.
"Generalized dynamic factor models and volatilities: recovering the market volatility shocks,"
Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
- Matteo Barigozzi & Marc Hallin, 2014. "Generalized Dynamic Factor Models and Volatilities. Recovering the Market Volatility Shocks," Working Papers ECARES ECARES 2014-52, ULB -- Universite Libre de Bruxelles.
- Barigozzi, Matteo & Hallin, Mark, 2015. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," LSE Research Online Documents on Economics 60980, London School of Economics and Political Science, LSE Library.
- Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
- Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022.
"Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency,"
Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
- Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
- Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010.
"Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
- Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011.
"Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," CREATES Research Papers 2008-63, Department of Economics and Business Economics, Aarhus University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Post-Print hal-00815564, HAL.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Papers 2008-W10, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Ole E. Barndorff-Nielsen & Peter Reinhard Hansen, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Series Working Papers 397, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
- Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011.
"Subsampling realised kernels,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
- Ole E. Barndorff-Nielsen & Peter R. Hansen & Asger Lunde & Neil Shephard, 2006. "Subsampling realised kernels," OFRC Working Papers Series 2006fe06, Oxford Financial Research Centre.
- Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Subsampling realised kernels," Economics Papers 2006-W10, Economics Group, Nuffield College, University of Oxford.
- Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016.
"The common factor in idiosyncratic volatility: Quantitative asset pricing implications,"
Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
- Bernard Herskovic & Bryan T. Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2014. "The Common Factor in Idiosyncratic Volatility: Quantitative Asset Pricing Implications," NBER Working Papers 20076, National Bureau of Economic Research, Inc.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Jacod, Jean & Klüppelberg, Claudia & Müller, Gernot, 2017. "Testing for non-correlation between price and volatility jumps," Journal of Econometrics, Elsevier, vol. 197(2), pages 284-297.
- Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
- Connor, Gregory & Korajczyk, Robert A. & Linton, Oliver, 2006. "The common and specific components of dynamic volatility," Journal of Econometrics, Elsevier, vol. 132(1), pages 231-255, May.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Oh, Dong Hwan & Patton, Andrew J., 2016.
"High-dimensional copula-based distributions with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
- Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
- Jean Jacod & Yingying Li & Xinghua Zheng, 2017. "Statistical Properties of Microstructure Noise," Econometrica, Econometric Society, vol. 85, pages 1133-1174, July.
- Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- repec:hal:journl:peer-00732537 is not listed on IDEAS
- Jianqing Fan & Donggyu Kim, 2018. "Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1268-1283, July.
- Jushan Bai & Pierre Perron, 2003.
"Computation and analysis of multiple structural change models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
- BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
- Tom Doan, "undated". "MULTIPLEBREAKS: RATS procedure to perform multiple structural change analysis," Statistical Software Components RTS00138, Boston College Department of Economics.
- Tom Doan, "undated". "RATS programs to replicate examples of Bai-Perron procedure," Statistical Software Components RTZ00008, Boston College Department of Economics.
- Tom Doan, "undated". "BAIPERRON: RATS procedure to perform Bai-Perron Test for Multiple Structural Changes," Statistical Software Components RTS00013, Boston College Department of Economics.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Hansen, Peter R. & Lunde, Asger, 2014.
"Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error,"
Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
- Peter R. Hansen & Asger Lunde, 2010. "Estimating the Persistence and the Autocorrelation Function of a Time Series that is Measured with Error," CREATES Research Papers 2010-08, Department of Economics and Business Economics, Aarhus University.
- Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
- Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
- Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2019.
"Time-Varying Periodicity in Intraday Volatility,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1695-1707, October.
- Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2018. "Time-Varying Periodicity in Intraday Volatility," CREATES Research Papers 2018-05, Department of Economics and Business Economics, Aarhus University.
- Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011.
"Ultra high frequency volatility estimation with dependent microstructure noise,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
- Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
- Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Masato Ubukata & Kosuke Oya, 2009. "Estimation and Testing for Dependence in Market Microstructure Noise," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 106-151, Spring.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Mao, Guangyu & Zhang, Zhengjun, 2018. "Stochastic tail index model for high frequency financial data with Bayesian analysis," Journal of Econometrics, Elsevier, vol. 205(2), pages 470-487.
- Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Hetland, Simon & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2023. "Dynamic conditional eigenvalue GARCH," Journal of Econometrics, Elsevier, vol. 237(2).
- Qiang Sun & Wen-Xin Zhou & Jianqing Fan, 2020. "Adaptive Huber Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 254-265, January.
- Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Jianqing Fan & Donggyu Kim & Minseok Shin, 2024. "Adaptive Robust Large Volatility Matrix Estimation Based on High-Frequency Financial Data," Working Papers 202419, University of California at Riverside, Department of Economics.
- Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022.
"Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency,"
Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
- Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
- Donggyu Kim & Minseog Oh, 2024.
"Dynamic Realized Minimum Variance Portfolio Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
- Donggyu Kim & Minseog Oh, 2023. "Dynamic Realized Minimum Variance Portfolio Models," Papers 2310.13511, arXiv.org.
- Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Working Papers 202421, University of California at Riverside, Department of Economics.
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2023.
"Overnight GARCH-Itô Volatility Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2021. "Overnight GARCH-It\^o Volatility Models," Papers 2102.13467, arXiv.org, revised Jun 2022.
- Xinyu Song, 2019. "Large Volatility Matrix Prediction with High-Frequency Data," Papers 1907.01196, arXiv.org, revised Sep 2019.
- Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
- Donggyu Kim, 2021. "Exponential GARCH-Ito Volatility Models," Papers 2111.04267, arXiv.org.
- Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
- Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
- Dohyun Chun & Donggyu Kim, 2022.
"State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
- Dohyun Chun & Donggyu Kim, 2021. "State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data," Papers 2102.13404, arXiv.org.
- Donggyu Kim & Minseok Shin, 2024. "Robust High-Dimensional Time-Varying Coefficient Estimation," Working Papers 202417, University of California at Riverside, Department of Economics.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022.
"Next generation models for portfolio risk management: An approach using financial big data,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
- Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
- Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
- Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
- Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
- Minseog Oh & Donggyu Kim, 2024.
"Effect of the U.S.–China Trade War on Stock Markets: A Financial Contagion Perspective,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(4), pages 954-1005.
- Minseog Oh & Donggyu Kim, 2021. "Effect of the U.S.--China Trade War on Stock Markets: A Financial Contagion Perspective," Papers 2111.09655, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-01-06 (Econometrics)
- NEP-ETS-2025-01-06 (Econometric Time Series)
- NEP-MST-2025-01-06 (Market Microstructure)
- NEP-RMG-2025-01-06 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.