The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bing-Yi Jing & Zhi Liu & Xin-Bing Kong, 2014. "On the Estimation of Integrated Volatility With Jumps and Microstructure Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 457-467, July.
- Cui-Xia Li & Jin-Yuan Chen & Zhi Liu & Bing-Yi Jing, 2014. "On Integrated Volatility of Itô Semimartingales when Sampling Times are Endogenous," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(24), pages 5263-5275, December.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
- Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005.
"A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
- Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
- repec:wyi:journl:002161 is not listed on IDEAS
- Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
- Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010.
"Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
- Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
- Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
- Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014.
"High-Frequency Trading and Price Discovery,"
The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
- Brogaard, Jonathan & Hendershott, Terrence & Riordan, Ryan, 2013. "High frequency trading and price discovery," Working Paper Series 1602, European Central Bank.
- Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
- Cuixia Li & Erlin Guo, 2018. "Estimation of the integrated volatility using noisy high-frequency data with jumps and endogeneity," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(3), pages 521-531, February.
- Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
- repec:hal:journl:peer-00732537 is not listed on IDEAS
- Jin, Chenfei & Tsai, Fu-Sheng & Gu, Qiuyang & Wu, Bao, 2022. "Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings," Research in International Business and Finance, Elsevier, vol. 62(C).
- Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022.
"Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data,"
Working Papers
202212, University of Liverpool, Department of Economics.
- Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2023. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Papers 2307.01348, arXiv.org.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022.
"Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data,"
Cambridge Working Papers in Economics
2218, Faculty of Economics, University of Cambridge.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Janeway Institute Working Papers 2208, Faculty of Economics, University of Cambridge.
- Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
- Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
- Donggyu Kim & Minseog Oh, 2024.
"Dynamic Realized Minimum Variance Portfolio Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
- Donggyu Kim & Minseog Oh, 2023. "Dynamic Realized Minimum Variance Portfolio Models," Papers 2310.13511, arXiv.org.
- Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
- Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
- Ilze Kalnina, 2023.
"Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
- KALNINA, Ilze, 2015. "Inference for nonparametric high-frequency estimators with an application to time variation in betas," Cahiers de recherche 2015-08, Universite de Montreal, Departement de sciences economiques.
- Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Dohyun Chun & Donggyu Kim, 2022.
"State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
- Dohyun Chun & Donggyu Kim, 2021. "State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data," Papers 2102.13404, arXiv.org.
- Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
- Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
- Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022.
"Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency,"
Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
- Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
- Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
- Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
- Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
- Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
- Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
- Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2019.
"Estimating the Spot Covariation of Asset Prices—Statistical Theory and Empirical Evidence,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 419-435, July.
- Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," CFS Working Paper Series 477, Center for Financial Studies (CFS).
- Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2014. "Estimating the Spot Covariation of Asset Prices – Statistical Theory and Empirical Evidence," Cambridge Working Papers in Economics 1464, Faculty of Economics, University of Cambridge.
- Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," SFB 649 Discussion Papers 2014-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
More about this item
Keywords
high-frequency data; asymptotic theory; threshold; jumps; large integrated volatility matrix;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1425-:d:1098174. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.