IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122240.html
   My bibliography  Save this paper

A Decision-Analytic Framework to explore the water-energy-food nexus in complex and transboundary water resources systems, with Climate Change Uncertainty

Author

Listed:
  • Koundouri, Phoebe
  • Englezos, Nikos
  • Kartala, Xanthi
  • Tsionas, Mike

Abstract

In this paper we develop and apply a stochastic multistage dynamic cooperative game for managing transboundary water resources, within the water-food-energy nexus framework, under climate uncertainty. The mathematical model is solved for the non-cooperative and cooperative (Stackelberg 'leader-follower') cases and is applied to the Omo-Turkana River Basin in Africa. The empirical application of the model calls for sector-specific production function estimations, for which we employ nonparametric treatment of the production functions a la Gandhi, Navarro, and Rivers (2017), while we extend it to allow for technical inefficiency in production and autocorrelated TFP. Bayesian analysis is performed using a Sequential Monte Carlo / Particle-Filtering approach. We find that the cooperative solution is the optimal pathway not only for both riparian countries, but for the sustainable use of the basin as well, whereas in extreme Climate Change circumstances it remains the welfare maximizing option. We argue that the detail and sophistication of both the mathematical and econometric models are needed for robust policy recommendations towards sustainable management of transboundary resources.

Suggested Citation

  • Koundouri, Phoebe & Englezos, Nikos & Kartala, Xanthi & Tsionas, Mike, 2019. "A Decision-Analytic Framework to explore the water-energy-food nexus in complex and transboundary water resources systems, with Climate Change Uncertainty," MPRA Paper 122240, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:122240
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122240/1/MPRA_paper_122240.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    2. Tran, Kien C. & Tsionas, Efthymios G., 2013. "GMM estimation of stochastic frontier model with endogenous regressors," Economics Letters, Elsevier, vol. 118(1), pages 233-236.
    3. Hall, Jamie & Pitt, Michael K. & Kohn, Robert, 2014. "Bayesian inference for nonlinear structural time series models," Journal of Econometrics, Elsevier, vol. 179(2), pages 99-111.
    4. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    5. Hausman, J. A. & Newey, W. K. & Powell, J. L., 1995. "Nonlinear errors in variables Estimation of some Engel curves," Journal of Econometrics, Elsevier, vol. 65(1), pages 205-233, January.
    6. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.
    7. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    8. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    9. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    10. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    11. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    12. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    13. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    14. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(5), pages 933-956, October.
    15. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    16. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    17. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    18. Phoebe Koundouri & Christina Christou, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 227-245, June.
    19. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    20. Roberto Casarin & Jean-Michel Marin, 2007. "Online data processing: comparison of Bayesian regularized particle filters," Working Papers 0703, University of Brescia, Department of Economics.
    21. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    22. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Englezos & X. Kartala & P. Koundouri & M. Tsionas & A. Alamanos, 2023. "A Novel HydroEconomic - Econometric Approach for Integrated Transboundary Water Management Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 975-1030, April.
    2. Tsionas, Mike G. & Mallick, Sushanta K., 2019. "A Bayesian semiparametric approach to stochastic frontiers and productivity," European Journal of Operational Research, Elsevier, vol. 274(1), pages 391-402.
    3. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    4. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    5. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    6. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    7. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    8. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    9. Emir Malikov & Gudbrand Lien, 2021. "Proxy Variable Estimation of Multiproduct Production Functions," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1878-1902, October.
    10. Mustafa U. Karakaplan & Levent Kutlu, 2017. "Handling Endogeneity in Stochastic Frontier Analysis," Economics Bulletin, AccessEcon, vol. 37(2), pages 889-901.
    11. Tran, Kien C. & Tsionas, Mike G., 2016. "On the estimation of zero-inefficiency stochastic frontier models with endogenous regressors," Economics Letters, Elsevier, vol. 147(C), pages 19-22.
    12. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    13. Malikov, Emir, 2016. "Estimating Multi-Product Production Functions and Productivity using Control Functions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235108, Agricultural and Applied Economics Association.
    14. Artem Prokhorov & Kien C. Tran & Mike G. Tsionas, 2021. "Estimation of semi- and nonparametric stochastic frontier models with endogenous regressors," Empirical Economics, Springer, vol. 60(6), pages 3043-3068, June.
    15. Michael L. Polemis & Mike G. Tsionas, 2022. "Endogenous productivity: a new Bayesian perspective," Annals of Operations Research, Springer, vol. 318(1), pages 425-451, November.
    16. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    17. Frick, Fabian & Sauer, Johannes, 2016. "Deregulation and Productivity – Empirical Evidence on Dairy Production," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236032, Agricultural and Applied Economics Association.
    18. Mike G. Tsionas & Subal C. Kumbhakar, 2023. "Productivity and Performance: A GMM approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 331-344, April.
    19. Dibyendu Maiti & Chiranjib Neogi, 2024. "Endogeneity-corrected stochastic frontier with market imperfections," Empirical Economics, Springer, vol. 67(3), pages 1149-1183, September.
    20. William C. Horrace & Hyunseok Jung, 2018. "Stochastic frontier models with network selectivity," Journal of Productivity Analysis, Springer, vol. 50(3), pages 101-116, December.

    More about this item

    Keywords

    stochasticity; Markov processes; endogenous adaptation; technical inefficiency; autocorrelation; copula approach.;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.