IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09904-3.html
   My bibliography  Save this article

Discrete Tempered Stable Distributions

Author

Listed:
  • Michael Grabchak

    (University of North Carolina Charlotte)

Abstract

Discrete tempered stable distributions are a large and flexible class of models for heavy tailed and overdispersed count data. In this paper we derive various properties of these distributions and develop an exact simulation method based on rejection sampling and a compound Poisson representation. We extend this method to exact simulation of the corresponding bilateral distributions and Lévy processes.

Suggested Citation

  • Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09904-3
    DOI: 10.1007/s11009-021-09904-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09904-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09904-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    2. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2012. "Integer-valued L�vy processes and low latency financial econometrics," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 587-605, January.
    3. Zhu, Rong & Joe, Harry, 2009. "Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1695-1703, August.
    4. Grabchak, Michael, 2021. "An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case," Statistics & Probability Letters, Elsevier, vol. 170(C).
    5. Dutang, Christophe & Goulet, Vincent & Pigeon, Mathieu, 2008. "actuar: An R Package for Actuarial Science," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i07).
    6. Christoph, Gerd & Schreiber, Karina, 1998. "Discrete stable random variables," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 243-247, March.
    7. Klebanov, Lev B. & Slámová, Lenka, 2013. "Integer valued stable random variables," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1513-1519.
    8. Vincent Goulet & Christophe Dutang & Mathieu Pigeon, 2008. "actuar : An R Package for Actuarial Science," Post-Print hal-01616144, HAL.
    9. Devroye, Luc, 1993. "A triptych of discrete distributions related to the stable law," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 349-351, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Noia, Antonio & Marcheselli, Marzia & Pisani, Caterina & Pratelli, Luca, 2023. "Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions," Statistics & Probability Letters, Elsevier, vol. 202(C).
    2. Krutto Annika & Haugdahl Nøst Therese & Thoresen Magne, 2024. "A heavy-tailed model for analyzing miRNA-seq raw read counts," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 23(1), pages 1-30.
    3. repec:jss:jstsof:35:i10 is not listed on IDEAS
    4. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    5. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    6. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    8. Denuit, Michel, 2019. "Investing in your own and peers' risks: The simple analytics of p2p insurance," LIDAM Discussion Papers ISBA 2019028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Rémillard Bruno & Theodorescu Radu, 2000. "Inference Based On The Empirical Probability Generating Function For Mixtures Of Poisson Distributions," Statistics & Risk Modeling, De Gruyter, vol. 18(4), pages 349-366, April.
    10. Adele H. Marshall & Mariangela Zenga, 2012. "Experimenting with the Coxian Phase-Type Distribution to Uncover Suitable Fits," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 71-86, March.
    11. Ozkok, Erengul & Streftaris, George & Waters, Howard R. & Wilkie, A. David, 2012. "Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 266-279.
    12. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
    13. Hassan Mazengera, 2017. "Revenue-based lending for SMEs," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-20, June.
    14. Lucio Barabesi & Luca Pratelli, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 345-351, August.
    15. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    16. Kobus, Paweł, 2013. "Modelling joint distribution of crop plant yields and prices with use of a copula function," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 13(28), pages 1-10, December.
    17. Devolder, Pierre, 2019. "Une alternative a la pension a points : le compte individuel pension en euros," LIDAM Discussion Papers ISBA 2019011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    19. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    20. Klebanov, Lev B. & Slámová, Lenka, 2013. "Integer valued stable random variables," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1513-1519.
    21. Jian Wang & Cielito C. Reyes-Gibby & Sanjay Shete, 2021. "An Approach to Analyze Longitudinal Zero-Inflated Microbiome Count Data Using Two-Stage Mixed Effects Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 267-290, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09904-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.