IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v21y2018i3d10.1007_s11147-018-9142-1.html
   My bibliography  Save this article

Dynamic hedging with futures: a copula-based GARCH model with high-frequency data

Author

Listed:
  • Yu-Sheng Lai

    (National Chi Nan University)

Abstract

Modeling the joint distribution of spot and futures returns is crucial for establishing optimal hedging strategies. This paper proposes a new class of dynamic copula-GARCH models that exploits information from high-frequency data for hedge ratio estimation. The copula theory facilitates constructing a flexible distribution; the inclusion of realized volatility measures constructed from high-frequency data enables copula forecasts to swiftly adapt to changing markets. By using data concerning equity index returns, the estimation results show that the inclusion of realized measures of volatility and correlation greatly enhances the explanatory power in the modeling. Moreover, the out-of-sample forecasting results show that the hedged portfolios constructed from the proposed model are superior to those constructed from the prevailing models in reducing the (estimated) conditional hedged portfolio variance. Finally, the economic gains from exploiting high-frequency data for estimating the hedge ratios are examined. It is found that hedgers obtain additional benefits by including high-frequency data in their hedging decisions; more risk-averse hedgers generate greater benefits.

Suggested Citation

  • Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
  • Handle: RePEc:kap:revdev:v:21:y:2018:i:3:d:10.1007_s11147-018-9142-1
    DOI: 10.1007/s11147-018-9142-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-018-9142-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-018-9142-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    4. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    8. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    9. Chen, Yi-Ting, 2007. "Moment-Based Copula Tests for Financial Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 377-397, October.
    10. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    13. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    14. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    15. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    16. Richard D. F. Harris & Jian Shen, 2003. "Robust estimation of the optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(8), pages 799-816, August.
    17. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    18. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    19. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    20. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    21. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    22. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    23. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    24. Yu‐Sheng Lai, 2016. "Hedge Ratio Prediction with Noisy and Asynchronous High‐Frequency Data," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(3), pages 295-314, March.
    25. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    26. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    27. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    28. Sung Yong Park & Sang Young Jei, 2010. "Estimation and hedging effectiveness of time‐varying hedge ratio: Flexible bivariate garch approaches," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(1), pages 71-99, January.
    29. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2014. "Realized Beta Garch: A Multivariate Garch Model With Realized Measures Of Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 774-799, August.
    30. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    31. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    32. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    33. Hsiang‐Tai Lee, 2009. "A copula‐based regime‐switching GARCH model for optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(10), pages 946-972, October.
    34. Chih‐Chiang Hsu & Chih‐Ping Tseng & Yaw‐Huei Wang, 2008. "Dynamic hedging with futures: A copula‐based GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1095-1116, November.
    35. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    36. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    37. Jing-Yi Lai, 2012. "An empirical study of the impact of skewness and kurtosis on hedging decisions," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1827-1837, December.
    38. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    39. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    2. Yang, Kun & Wei, Yu & Li, Shouwei & He, Jianmin, 2020. "Asymmetric risk spillovers between Shanghai and Hong Kong stock markets under China’s capital account liberalization," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    2. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    3. Yu‐Sheng Lai, 2021. "Generalized autoregressive score model with high‐frequency data for optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 2023-2045, December.
    4. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    5. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    6. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    8. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    9. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    10. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
    11. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    12. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    13. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    14. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    15. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    16. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    17. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    18. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    19. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    20. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.

    More about this item

    Keywords

    Dynamic copula; High-frequency data; Realized covariance; Futures hedge; Forecast comparison;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:21:y:2018:i:3:d:10.1007_s11147-018-9142-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.