Estimating Growth at Risk with Skewed Stochastic Volatility Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010.
"Quantile and Probability Curves Without Crossing,"
Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Post-Print hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and Probability Curves Without Crossing," Papers 0704.3649, arXiv.org, revised Jul 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile And Probability Curves Without Crossing," Boston University - Department of Economics - Working Papers Series WP2007-011, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," SciencePo Working papers Main hal-01052958, HAL.
- John Geweke, 1999.
"Using simulation methods for bayesian econometric models: inference, development,and communication,"
Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
- John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
- Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
- repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Edward Herbst & Frank Schorfheide, 2014.
"Sequential Monte Carlo Sampling For Dsge Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
- Edward P. Herbst & Frank Schorfheide, 2012. "Sequential Monte Carlo sampling for DSGE models," Working Papers 12-27, Federal Reserve Bank of Philadelphia.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo Sampling for DSGE Models," NBER Working Papers 19152, National Bureau of Economic Research, Inc.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo sampling for DSGE models," Finance and Economics Discussion Series 2013-43, Board of Governors of the Federal Reserve System (U.S.).
- Flury, Thomas & Shephard, Neil, 2011.
"Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models,"
Econometric Theory, Cambridge University Press, vol. 27(5), pages 933-956, October.
- Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Iseringhausen, Martin, 2024.
"A time-varying skewness model for Growth-at-Risk,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
- Martin Iseringhausen, 2021. "A time-varying skewness model for Growth-at-Risk," Working Papers 49, European Stability Mechanism.
- Fernández-Villaverde, J. & Rubio-RamÃrez, J.F. & Schorfheide, F., 2016.
"Solution and Estimation Methods for DSGE Models,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724,
Elsevier.
- Jesus Fernandez-Villaverde & Juan Rubio-RamÃrez & Frank Schorfheide, 2015. "Solution and Estimation Methods for DSGE Models," PIER Working Paper Archive 15-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2015.
- Jesús Fernández-Villaverde & Juan F. Rubio Ramírez & Frank Schorfheide, 2016. "Solution and Estimation Methods for DSGE Models," NBER Working Papers 21862, National Bureau of Economic Research, Inc.
- Rubio-RamÃrez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
- Sanha Noh, 2020. "Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 795-841, December.
- Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
- Neil Shephard, 2013.
"Martingale unobserved component models,"
Economics Papers
2013-W01, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 644, University of Oxford, Department of Economics.
- Storti, Giuseppe & Wang, Chao, 2022.
"Nonparametric expected shortfall forecasting incorporating weighted quantiles,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
- Giuseppe Storti & Chao Wang, 2020. "Nonparametric Expected Shortfall Forecasting Incorporating Weighted Quantiles," Papers 2005.04868, arXiv.org, revised Mar 2021.
- Sulkhan Chavleishvili & Simone Manganelli, 2024.
"Forecasting and stress testing with quantile vector autoregression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
- Chavleishvili, Sulkhan & Manganelli, Simone, 2019. "Forecasting and stress testing with quantile vector autoregression," Working Paper Series 2330, European Central Bank.
- Elmar Mertens & James M. Nason, 2020.
"Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility,"
Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
- Elmar Mertens & James M Nason, 2015. "Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility," CAMA Working Papers 2015-06, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Elmar Mertens & James M. Nason, 2017. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," CAMA Working Papers 2017-60, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Elmar Mertens & James M. Nason, 2018. "Inflation and professional forecast dynamics: an evaluation of stickiness, persistence, and volatility," BIS Working Papers 713, Bank for International Settlements.
- Neil Shephard & Arnaud Doucet, 2012.
"Robust inference on parameters via particle filters and sandwich covariance matrices,"
Economics Series Working Papers
606, University of Oxford, Department of Economics.
- Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
- Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
- David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
- Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
- Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
- Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
More about this item
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
- G01 - Financial Economics - - General - - - Financial Crises
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2024-01-01 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc23:277696. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.