IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/49344.html
   My bibliography  Save this paper

Estimation and Inference in Univariate and Multivariate Log-GARCH-X Models When the Conditional Density is Unknown

Author

Listed:
  • Sucarrat, Genaro
  • Grønneberg, Steffen
  • Escribano, Alvaro

Abstract

Exponential models of Autoregressive Conditional Heteroscedasticity (ARCH) enable richer dynamics (e.g. contrarian or cyclical), provide greater robustness to jumps and outliers, and guarantee the positivity of volatility. The latter is not guaranteed in ordinary ARCH models, in particular when additional exogenous or predetermined variables ("X") are included in the volatility specification. Here, we propose estimation and inference methods for univariate and multivariate Generalised log-ARCH-X (i.e. log-GARCH-X) models when the conditional density is not known via (V)ARMA-X representations. The multivariate specification allows for volatility feedback across equations, and time-varying correlations can be fitted in a subsequent step. Finally, our empirical applications on electricity prices show that the model-class is particularly useful when the X-vector is high-dimensional.

Suggested Citation

  • Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2013. "Estimation and Inference in Univariate and Multivariate Log-GARCH-X Models When the Conditional Density is Unknown," MPRA Paper 49344, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:49344
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/49344/1/loggarch.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/57237/1/loggarch.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/57238/1/MPRA_paper_57238.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/62352/1/MPRA_paper_62352.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    3. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    4. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    5. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
    6. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
    7. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    8. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    9. Francq, Christian & Wintenberger, Olivier & Zakoïan, Jean-Michel, 2013. "GARCH models without positivity constraints: Exponential or log GARCH?," Journal of Econometrics, Elsevier, vol. 177(1), pages 34-46.
    10. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    11. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    12. Christian Francq & Jean‐Michel Zakoïan, 2006. "Linear‐representation Based Estimation of Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 785-806, December.
    13. Sucarrat, Genaro, 2013. "Unbiased QML Estimation of Log-GARCH Models in the Presence of Zero Returns," UC3M Working papers. Economics we1321, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Francq, Christian & Zakoian, Jean-Michel, 2010. "QML estimation of a class of multivariate GARCH models without moment conditions on the observed process," MPRA Paper 20779, University Library of Munich, Germany.
    15. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    16. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    17. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    18. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    19. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    20. Hao Yu, 2007. "High Moment Partial Sum Processes of Residuals in ARMA Models and their Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 72-91, January.
    21. Bauwens, Luc & Hafner, Christian & Pierret, Diane, 2013. "Modelling multivariate volatility of electricity futures," LIDAM Reprints ISBA 2013030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    22. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    23. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(2), pages 336-363, April.
    24. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    25. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    26. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    27. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    28. Zacharias Psaradakis & Elias Tzavalis, 1999. "On regression-based tests for persistence in logarithmic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 18(4), pages 441-448.
    29. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
    30. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    31. repec:dau:papers:123456789/10571 is not listed on IDEAS
    32. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, December.
    33. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    34. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
    35. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    36. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    37. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    38. Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    39. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    40. Kawakatsu, Hiroyuki, 2006. "Matrix exponential GARCH," Journal of Econometrics, Elsevier, vol. 134(1), pages 95-128, September.
    41. Lee, Sangyeol, 1997. "A note on the residual empirical process in autoregressive models," Statistics & Probability Letters, Elsevier, vol. 32(4), pages 405-411, April.
    42. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    43. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    44. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
    2. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    3. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Philipp Otto, 2022. "A Multivariate Spatial and Spatiotemporal ARCH Model," Papers 2204.12472, arXiv.org.
    5. Holger Fink & Andreas Fuest & Henry Port, 2018. "The Impact of Sovereign Yield Curve Differentials on Value-at-Risk Forecasts for Foreign Exchange Rates," Risks, MDPI, vol. 6(3), pages 1-19, August.
    6. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    7. Sucarrat, Genaro, 2013. "Unbiased QML Estimation of Log-GARCH Models in the Presence of Zero Returns," UC3M Working papers. Economics we1321, Universidad Carlos III de Madrid. Departamento de Economía.
    8. Escribano, Alvaro & Sucarrat, Genaro, 2018. "Equation-by-equation estimation of multivariate periodic electricity price volatility," Energy Economics, Elsevier, vol. 74(C), pages 287-298.
    9. Sucarrat, Genaro, 2018. "The Log-GARCH Model via ARMA Representations," MPRA Paper 100386, University Library of Munich, Germany.
    10. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    11. Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
    12. Christian M. Hafner & Dimitra Kyriakopoulou, 2021. "Exponential-Type GARCH Models With Linear-in-Variance Risk Premium," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 589-603, March.
    13. Sebastian Letmathe & Yuanhua Feng & André Uhde, 2021. "Semiparametric GARCH models with long memory applied to Value at Risk and Expected Shortfall," Working Papers CIE 141, Paderborn University, CIE Center for International Economics.
    14. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    15. Sucarrat, Genaro, 2020. "Identification of Volatility Proxies as Expectations of Squared Financial Return," MPRA Paper 101953, University Library of Munich, Germany.
    16. Pourkhanali, Armin & Tafakori, Laleh & Bee, Marco, 2023. "Forecasting Value-at-Risk using functional volatility incorporating an exogenous effect," International Review of Financial Analysis, Elsevier, vol. 89(C).
    17. Christian Francq & Olivier Wintenberger & Jean-Michel Zakoïan, 2018. "Goodness-of-fit tests for Log-GARCH and EGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 27-51, March.
    18. Yuanhua Feng & Jan Beran & Sebastian Letmathe & Sucharita Ghosh, 2020. "Fractionally integrated Log-GARCH with application to value at risk and expected shortfall," Working Papers CIE 137, Paderborn University, CIE Center for International Economics.
    19. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    20. Sucarrat, Genaro, 2021. "Identification of volatility proxies as expectations of squared financial returns," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1677-1690.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    2. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
    3. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    5. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    6. Sucarrat, Genaro, 2018. "The Log-GARCH Model via ARMA Representations," MPRA Paper 100386, University Library of Munich, Germany.
    7. Escribano, Alvaro & Sucarrat, Genaro, 2018. "Equation-by-equation estimation of multivariate periodic electricity price volatility," Energy Economics, Elsevier, vol. 74(C), pages 287-298.
    8. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    9. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    10. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    11. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    12. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    13. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    14. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    15. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    16. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Bauer, Dietmar, 2008. "Using Subspace Methods For Estimating Arma Models For Multivariate Time Series With Conditionally Heteroskedastic Innovations," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1063-1092, August.
    18. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    20. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    21. Francq, Christian & Zakoian, Jean-Michel, 2010. "QML estimation of a class of multivariate GARCH models without moment conditions on the observed process," MPRA Paper 20779, University Library of Munich, Germany.

    More about this item

    Keywords

    ARCH; exponential GARCH; log-GARCH; ARMA-X; Multivariate GARCH;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:49344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.