IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i6p2378-2398.html
   My bibliography  Save this article

Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps

Author

Listed:
  • Gongyue Jiang
  • Gaoxiu Qiao
  • Lu Wang
  • Feng Ma

Abstract

From the cross‐market perspective, this paper investigates crude oil volatility index (OVX) forecasts by proposing a hybrid method, which combines the data‐driven SVR technique and parametric models. In terms of parametric models, we utilize GARCH‐type models with jumps, and the forecasting effects of five non‐parametric jumps (including interday and intraday jump tests) of stock market are also explored. Empirical results show that our approach can substantially increase forecasting accuracy. In addition, the model confidence set test and robust test reaffirm the superiority of the novel hybrid method. From the assessment of economic significance, the advantages of the hybrid method for volatility index forecasting are further confirmed. All these findings imply that jumps of stock market can be helpful in forecasting OVX, especially after the introduction of the hybrid method. Our work can certainly provide a new insight for volatility forecasting and cross‐market research.

Suggested Citation

  • Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:2378-2398
    DOI: 10.1002/for.3132
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3132
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    5. Li, Jingyu & Liu, Ranran & Yao, Yanzhen & Xie, Qiwei, 2022. "Time-frequency volatility spillovers across the international crude oil market and Chinese major energy futures markets: Evidence from COVID-19," Resources Policy, Elsevier, vol. 77(C).
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    8. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    9. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    10. Christoffersen, Peter & Feunou, Bruno & Jeon, Yoontae, 2015. "Option valuation with observable volatility and jump dynamics," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 101-120.
    11. Jinji Hao & Jin E. Zhang, 2013. "GARCH Option Pricing Models, the CBOE VIX, and Variance Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 11(3), pages 556-580, June.
    12. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    13. Yueh‐Neng Lin, 2007. "Pricing VIX futures: Evidence from integrated physical and risk‐neutral probability measures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(12), pages 1175-1217, December.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Lv, Wendai, 2018. "Does the OVX matter for volatility forecasting? Evidence from the crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 916-922.
    16. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    17. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    20. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    21. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    22. Spyridon D. Vrontos & John Galakis & Ioannis D. Vrontos, 2021. "Implied volatility directional forecasting: a machine learning approach," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1687-1706, October.
    23. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    24. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    25. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    26. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    27. James S. Doran, 2020. "Volatility as an asset class: Holding VIX in a portfolio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 841-859, June.
    28. Song‐Ping Zhu & Guang‐Hua Lian, 2012. "An analytical formula for VIX futures and its applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 166-190, February.
    29. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    30. Yingzi Zhu & Jin E. Zhang, 2007. "Variance Term Structure And Vix Futures Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 111-127.
    31. Liu, Zhenhua & Tseng, Hui-Kuan & Wu, Jy S. & Ding, Zhihua, 2020. "Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects," Resources Policy, Elsevier, vol. 66(C).
    32. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    33. Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
    34. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    35. Knut Anton Mork & Oystein Olsen & Hans Terje Mysen, 1994. "Macroeconomic Responses to Oil Price Increases and Decreases in Seven OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 19-36.
    36. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    37. Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
    38. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    39. Adam Clements & Joanne Fuller, 2012. "Forecasting increases in the VIX: A time-varying long volatility hedge for equities," NCER Working Paper Series 88, National Centre for Econometric Research.
    40. Chen, Yan & Qiao, Gaoxiu & Zhang, Feipeng, 2022. "Oil price volatility forecasting: Threshold effect from stock market volatility," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    41. Jin E. Zhang & Jinghong Shu & Menachem Brenner, 2010. "The new market for volatility trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(9), pages 809-833, September.
    42. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    43. Simon Lalancette & Jean†Guy Simonato, 2017. "The Role of the Conditional Skewness and Kurtosis in VIX Index Valuation," European Financial Management, European Financial Management Association, vol. 23(2), pages 325-354, March.
    44. Chen, Wang & Hamori, Shigeyuki & Kinkyo, Takuji, 2014. "Macroeconomic impacts of oil prices and underlying financial shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 29(C), pages 1-12.
    45. Liu, Qiang & Guo, Shuxin & Qiao, Gaoxiu, 2015. "VIX forecasting and variance risk premium: A new GARCH approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 314-322.
    46. Sadorsky, Perry, 2001. "Risk factors in stock returns of Canadian oil and gas companies," Energy Economics, Elsevier, vol. 23(1), pages 17-28, January.
    47. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    48. Tianyi Wang & Yiwen Shen & Yueting Jiang & Zhuo Huang, 2017. "Pricing the CBOE VIX Futures with the Heston–Nandi GARCH Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(7), pages 641-659, July.
    49. Ahmad, Wasim & Hernandez, Jose Arreola & Saini, Seema & Mishra, Ritesh Kumar, 2021. "The US equity sectors, implied volatilities, and COVID-19: What does the spillover analysis reveal?," Resources Policy, Elsevier, vol. 72(C).
    50. Rafiq, Shuddhasawtta & Salim, Ruhul & Bloch, Harry, 2009. "Impact of crude oil price volatility on economic activities: An empirical investigation in the Thai economy," Resources Policy, Elsevier, vol. 34(3), pages 121-132, September.
    51. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    2. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    4. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    5. Gaoxiu Qiao & Gongyue Jiang, 2023. "VIX futures pricing based on high‐frequency VIX: A hybrid approach combining SVR with parametric models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1238-1260, September.
    6. Gaoxiu Qiao & Wanmei Cui & Yijie Zhou & Chao Liang, 2025. "Volatility of Volatility and VIX Forecasting: New Evidence Based on Jumps, the Short‐Term and Long‐Term Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 23-46, January.
    7. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    8. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    9. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    10. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    11. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    12. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    13. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    14. Liu, Qiang & Guo, Shuxin & Qiao, Gaoxiu, 2015. "VIX forecasting and variance risk premium: A new GARCH approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 314-322.
    15. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    16. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    17. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    18. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    19. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    20. Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:2378-2398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.