IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i1p142-163.html
   My bibliography  Save this article

Dynamic functional data analysis with non-parametric state space models

Author

Listed:
  • M�rcio Poletti Laurini

Abstract

In this article, we introduce a new method for modelling curves with dynamic structures, using a non-parametric approach formulated as a state space model. The non-parametric approach is based on the use of penalised splines, represented as a dynamic mixed model. This formulation can capture the dynamic evolution of curves using a limited number of latent factors, allowing an accurate fit with a small number of parameters. We also present a new method to determine the optimal smoothing parameter through an adaptive procedure, using a formulation analogous to a model of stochastic volatility (SV). The non-parametric state space model allows unifying different methods applied to data with a functional structure in finance. We present the advantages and limitations of this method through simulation studies and also by comparing its predictive performance with other parametric and non-parametric methods used in financial applications using data on the term structure of interest rates.

Suggested Citation

  • M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:1:p:142-163
    DOI: 10.1080/02664763.2013.838663
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.838663
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.838663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    2. Vasicek, Oldrich A & Fong, H Gifford, 1982. "Term Structure Modeling Using Exponential Splines," Journal of Finance, American Finance Association, vol. 37(2), pages 339-348, May.
    3. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2010. "Bayesian extensions to Diebold-Li term structure model," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 342-350, December.
    4. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    5. McCulloch, J Huston, 1971. "Measuring the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 44(1), pages 19-31, January.
    6. Barzanti, Luca & Corradi, Corrado, 1998. "Erratum to: "A note on interest rate term structure estimation using tension splines" [Insurance: Mathematics and Economics 22 (1998) 139-143]," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 179-180, November.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    8. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    9. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    10. Jarrow, Robert & Ruppert, David & Yu, Yan, 2004. "Estimating the Interest Rate Term Structure of Corporate Debt With a Semiparametric Penalized Spline Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 57-66, January.
    11. Barzanti, Luca & Corradi, Corrado, 1998. "A note on interest rate term structure estimation using tension splines," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 139-143, June.
    12. Svensson, L.E.O., 1994. "Estimating and Interpreting Foreward Interest Rates: Sweden 1992-1994," Papers 579, Stockholm - International Economic Studies.
    13. Schaefer, Stephen M., 1982. "Tax-induced clientele effects in the market for British government securities : Placing bounds on security values in an incomplete market," Journal of Financial Economics, Elsevier, vol. 10(2), pages 121-159, July.
    14. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    15. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    16. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    18. Koopman, Siem Jan & Mallee, Max I. P. & Van der Wel, Michel, 2010. "Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 329-343.
    19. Pham, Toan M., 1998. "Estimation of the term structure of interest rates: an international perspective," Journal of Multinational Financial Management, Elsevier, vol. 8(2-3), pages 265-283, September.
    20. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    21. Qi Li & Jeffrey Scott Racine, 2006. "Density Estimation, from Nonparametric Econometrics: Theory and Practice," Introductory Chapters, in: Nonparametric Econometrics: Theory and Practice, Princeton University Press.
    22. Poletti Laurini, Márcio & Moura, Marcelo, 2010. "Constrained smoothing B-splines for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 339-350, April.
    23. McCulloch, J Huston, 1975. "The Tax-Adjusted Yield Curve," Journal of Finance, American Finance Association, vol. 30(3), pages 811-830, June.
    24. Mark Fisher & Douglas Nychka & David Zervos, 1995. "Fitting the term structure of interest rates with smoothing splines," Finance and Economics Discussion Series 95-1, Board of Governors of the Federal Reserve System (U.S.).
    25. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    26. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poletti Laurini, Márcio & Moura, Marcelo, 2010. "Constrained smoothing B-splines for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 339-350, April.
    2. Rafael Barros de Rezende, 2011. "Giving Flexibility to the Nelson-Siegel Class of Term Structure Models," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 27-49.
    3. Vadim Kaushanskiy & Victor Lapshin, 2016. "A nonparametric method for term structure fitting with automatic smoothing," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5654-5666, December.
    4. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    5. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    6. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    7. Shin, Minchul & Zhong, Molin, 2017. "Does realized volatility help bond yield density prediction?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
    8. repec:jss:jstsof:36:i01 is not listed on IDEAS
    9. repec:erh:journl:v:6:y:2014:i:2:p:78-100 is not listed on IDEAS
    10. Emma Berenguer-Carceles & Ricardo Gimeno & Juan M. Nave, 2012. "Estimation of the Term Structure of Interest Rates: Methodology and Applications," Working Papers 12.06, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    11. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    12. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    13. Annaert, Jan & Claes, Anouk G.P. & De Ceuster, Marc J.K. & Zhang, Hairui, 2013. "Estimating the spot rate curve using the Nelson–Siegel model," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 482-496.
    14. Laurini, Márcio Poletti & Ohashi, Alberto, 2015. "A noisy principal component analysis for forward rate curves," European Journal of Operational Research, Elsevier, vol. 246(1), pages 140-153.
    15. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
    16. Yallup, Peter J., 2012. "Models of the yield curve and the curvature of the implied forward rate function," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 121-135.
    17. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    18. Bing-Huei Lin, 2002. "Fitting term structure of interest rates using B-splines: the case of Taiwanese Government bonds," Applied Financial Economics, Taylor & Francis Journals, vol. 12(1), pages 57-75.
    19. Damir Filipović & Sander Willems, 2016. "Exact Smooth Term Structure Estimation," Swiss Finance Institute Research Paper Series 16-38, Swiss Finance Institute.
    20. Eduardo Mineo & Airlane Pereira Alencar & Marcelo Moura & Antonio Elias Fabris, 2020. "Forecasting the Term Structure of Interest Rates with Dynamic Constrained Smoothing B-Splines," JRFM, MDPI, vol. 13(4), pages 1-14, April.
    21. Márcio Poletti Laurini & Armênio Westin Neto, 2014. "Arbitrage in the Term Structure of Interest Rates: a Bayesian Approach," International Econometric Review (IER), Econometric Research Association, vol. 6(2), pages 77-99, September.
    22. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:1:p:142-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.