IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v46y2012i6p1947-1952.html
   My bibliography  Save this article

Moments structure of ℓ 1 -stochastic volatility models

Author

Listed:
  • David Neto
  • Sylvain Sardy

Abstract

We consider Taylor’s stochastic volatility model (SVM) when the innovations of the hidden log-volatility process have a Laplace distribution (ℓ 1 exponential density), rather than the standard Gaussian distribution (ℓ 2 ) usually employed. Recently many investigations have employed ℓ 1 metric to allow better modeling of the abrupt changes of regime observed in financial time series. However, the estimation of SVM is known to be difficult because it is a non-linear with an hidden markov process. Moreover, an additional difficulty yielded by the use of ℓ 1 metric is the not differentiability of the likelihood function. An alternative consists in using a generalized or efficient method-of-moments (GMM/EMM) estimation. For this purpose, we derive here the moments and autocovariance function of such ℓ 1 -based stochastic volatility models. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • David Neto & Sylvain Sardy, 2012. "Moments structure of ℓ 1 -stochastic volatility models," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1947-1952, October.
  • Handle: RePEc:spr:qualqt:v:46:y:2012:i:6:p:1947-1952
    DOI: 10.1007/s11135-011-9459-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-011-9459-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-011-9459-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    2. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    3. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    4. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    5. Sardy, Sylvain & Tseng, Paul, 2004. "On the Statistical Analysis of Smoothing by Maximizing Dirty Markov Random Field Posterior Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 191-204, January.
    6. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    2. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    5. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    7. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    8. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    9. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    10. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    11. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    12. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    13. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    14. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    15. Jin-Yu Zhang & Yong Li & Zhu-Ming Chen, 2013. "Unit Root Hypothesis in the Presence of Stochastic Volatility, a Bayesian Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 89-100, January.
    16. Berument, M. Hakan & Yalcin, Yeliz & Yildirim, Julide, 2012. "Inflation and inflation uncertainty: A dynamic framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4816-4826.
    17. Liu, Qingfu & Wong, Ieokhou & An, Yunbi & Zhang, Jinqing, 2014. "Asymmetric Information and Volatility Forecasting in Commodity Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 79-97.
    18. Smith Daniel R, 2009. "Asymmetry in Stochastic Volatility Models: Threshold or Correlation?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-36, May.
    19. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    20. Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.

    More about this item

    Keywords

    Stochastic volatility model; Laplace innovations; Autocovariance function; Variance gamma model; C22;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:46:y:2012:i:6:p:1947-1952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.