Monte Carlo simulation for Barndorff–Nielsen and Shephard model under change of measure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.11.029
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
- Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
- Takuji Arai, 2023. "Deep learning-based option pricing for Barndorff–Nielsen and Shephard model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-16, September.
- Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
- Indranil SenGupta & William Nganje & Erik Hanson, 2021.
"Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning,"
Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
- Indranil SenGupta & William Nganje & Erik Hanson, 2019. "Refinements of Barndorff-Nielsen and Shephard model: an analysis of crude oil price with machine learning," Papers 1911.13300, arXiv.org, revised Mar 2020.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.
- Takuji Arai & Yuto Imai, 2023. "Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure," Papers 2306.05750, arXiv.org.
- Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
- Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
- Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
- Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
- Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
- Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
- Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
- Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
- Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
- Dilip Madan, 2009. "A tale of two volatilities," Review of Derivatives Research, Springer, vol. 12(3), pages 213-230, October.
- Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
- Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
- Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
- Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
- Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
- Xianfei Hui & Baiqing Sun & Hui Jiang & Indranil SenGupta, 2021. "Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters," Papers 2101.08984, arXiv.org, revised Feb 2022.
- Laurent, Sébastien & Shi, Shuping, 2020.
"Volatility estimation and jump detection for drift–diffusion processes,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
- Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," Working Papers halshs-01944449, HAL.
- Sébastien Laurent & Shuping Shi, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Post-Print hal-02909690, HAL.
- Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," AMSE Working Papers 1843, Aix-Marseille School of Economics, France.
- Neil Shephard & Torben Andersen, 2008.
"Stochastic Volatility: Origins and Overview,"
Economics Papers
2008-W04, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," Economics Series Working Papers 389, University of Oxford, Department of Economics.
- Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
More about this item
Keywords
Barndorff–Nielsen and Shephard model; Stochastic volatility model; Minimal martingale measure; Monte Carlo simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:223-234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.