Subsampling MCMC - an Introduction for the Survey Statistician
Author
Abstract
Suggested Citation
DOI: 10.1007/s13171-018-0153-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Alexandre Bouchard-Côté & Sebastian J. Vollmer & Arnaud Doucet, 2018. "The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 855-867, April.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Flury, Thomas & Shephard, Neil, 2011.
"Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models,"
Econometric Theory, Cambridge University Press, vol. 27(5), pages 933-956, October.
- Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
- George Deligiannidis & Arnaud Doucet & Michael K. Pitt, 2018. "The correlated pseudomarginal method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 839-870, November.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
- Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
- Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
- Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
- Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017.
"Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," LSE Research Online Documents on Economics 80749, London School of Economics and Political Science, LSE Library.
- Chris Sherlock, 2016. "Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 869-884, September.
- Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
More about this item
Keywords
Pseudo-Marginal MCMC; Difference estimator; Hamiltonian Monte Carlo (HMC).;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-018-0153-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.