IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20140027.html
   My bibliography  Save this paper

Intraday Price Discovery in Fragmented Markets

Author

Listed:
  • Sait Ozturk

    (Econometric Institute, Erasmus University Rotterdam)

  • Michel van der Wel

    (Econometric Institute, Erasmus University Rotterdam)

Abstract

For many assets, trading is fragmented across multiple exchanges. Price discovery measures summarize the informativeness of trading on each venue for discovering the asset’s true underlying value. We explore intraday variation in price discovery using a structural model with time-varying parameters that can be estimated with state space techniques. An application to the Expedia stock demonstrates intraday variation, to the extent that the overall dominant trading venue (NASDAQ) does not lead the entire day. Spreads, the number of trades and volatility can explain almost half of the intraday variation in information shares.

Suggested Citation

  • Sait Ozturk & Michel van der Wel, 2014. "Intraday Price Discovery in Fragmented Markets," Tinbergen Institute Discussion Papers 14-027/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20140027
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/14027.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Slezak, Steve L, 1994. "A Theory of the Dynamics of Security Returns around Market Closures," Journal of Finance, American Finance Association, vol. 49(4), pages 1163-1211, September.
    2. Wood, Robert A & McInish, Thomas H & Ord, J Keith, 1985. "An Investigation of Transactions Data for NYSE Stocks," Journal of Finance, American Finance Association, vol. 40(3), pages 723-739, July.
    3. Joon Chae, 2005. "Trading Volume, Information Asymmetry, and Timing Information," Journal of Finance, American Finance Association, vol. 60(1), pages 413-442, February.
    4. Foster, F Douglas & Viswanathan, S, 1993. "Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models," Journal of Finance, American Finance Association, vol. 48(1), pages 187-211, March.
    5. Frank De Jong & Peter C. Schotman, 2010. "Price Discovery in Fragmented Markets," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 1-28, Winter.
    6. Menkveld, Albert J. & Koopman, Siem Jan & Lucas, Andre, 2007. "Modeling Around-the-Clock Price Discovery for Cross-Listed Stocks Using State Space Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 213-225, April.
    7. de Jong, Frank, 2002. "Measures of contributions to price discovery: a comparison," Journal of Financial Markets, Elsevier, vol. 5(3), pages 323-327, July.
    8. Upper, Christian & Werner, Thomas, 2002. "Tail Wags Dog? Time-Varying Information Shares in the Bund Market," Discussion Paper Series 1: Economic Studies 2002,24, Deutsche Bundesbank.
    9. Frijns, Bart & Schotman, Peter, 2009. "Price discovery in tick time," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 759-776, December.
    10. deB. Harris, Frederick H. & McInish, Thomas H. & Wood, Robert A., 2002. "Security price adjustment across exchanges: an investigation of common factor components for Dow stocks," Journal of Financial Markets, Elsevier, vol. 5(3), pages 277-308, July.
    11. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    12. Hee‐Joon Ahn & Kee‐Hong Bae & Kalok Chan, 2001. "Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong," Journal of Finance, American Finance Association, vol. 56(2), pages 767-788, April.
    13. Lockwood, Larry J & Linn, Scott C, 1990. "An Examination of Stock Market Return Volatility during Overnight and Intraday Periods, 1964-1989," Journal of Finance, American Finance Association, vol. 45(2), pages 591-601, June.
    14. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    15. Mizrach, Bruce & Neely, Christopher J., 2008. "Information shares in the US Treasury market," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1221-1233, July.
    16. Yan, Bingcheng & Zivot, Eric, 2010. "A structural analysis of price discovery measures," Journal of Financial Markets, Elsevier, vol. 13(1), pages 1-19, February.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Hasbrouck, Joel, 2004. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 305-326, June.
    19. Oleg Korenok & Bruce Mizrach & Stanislav Radchenko, 2011. "A Structural Approach To Information Shares," Departmental Working Papers 201130, Rutgers University, Department of Economics.
    20. Torben G. Andersen & Tim Bollerslev & Ashish Das, 2001. "Variance‐ratio Statistics and High‐frequency Data: Testing for Changes in Intraday Volatility Patterns," Journal of Finance, American Finance Association, vol. 56(1), pages 305-327, February.
    21. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    22. Lei, Qin & Wu, Guojun, 2005. "Time-varying informed and uninformed trading activities," Journal of Financial Markets, Elsevier, vol. 8(2), pages 153-181, May.
    23. repec:bla:jfinan:v:59:y:2004:i:3:p:1235-1258 is not listed on IDEAS
    24. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    25. Joel Hasbrouck, 2003. "Intraday Price Formation in U.S. Equity Index Markets," Journal of Finance, American Finance Association, vol. 58(6), pages 2375-2400, December.
    26. Grammig, Joachim & Peter, Franziska J., 2013. "Telltale Tails: A New Approach to Estimating Unique Market Information Shares," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 459-488, April.
    27. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    28. Lehmann, Bruce N., 2002. "Some desiderata for the measurement of price discovery across markets," Journal of Financial Markets, Elsevier, vol. 5(3), pages 259-276, July.
    29. David A. Hsieh & Allan W. Kleidon, 1996. "Bid-Ask Spreads in Foreign Exchange Markets: Implications for Models of Asymmetric Information," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 41-72, National Bureau of Economic Research, Inc.
    30. de Jong, F.C.J.M. & Schotman, P.C., 2010. "Price discovery in fragmented markets," Other publications TiSEM 4650a9e7-c4cf-41cf-a771-e, Tilburg University, School of Economics and Management.
    31. Baillie, Richard T. & Geoffrey Booth, G. & Tse, Yiuman & Zabotina, Tatyana, 2002. "Price discovery and common factor models," Journal of Financial Markets, Elsevier, vol. 5(3), pages 309-321, July.
    32. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    2. Takaki Hayashi & Yuta Koike, 2017. "Multi-scale analysis of lead-lag relationships in high-frequency financial markets," Papers 1708.03992, arXiv.org, revised May 2020.
    3. Alexandre Aidov & Olesya Lobanova, 2021. "Volatility and Depth in Commodity and FX Futures Markets," JRFM, MDPI, vol. 14(11), pages 1-16, November.
    4. Nidhi Aggarwal & Susan Thomas, 2019. "When stock futures dominate price discovery," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(3), pages 263-278, March.
    5. Ardalankia, Jamshid & Osoolian, Mohammad & Haven, Emmanuel & Jafari, G. Reza, 2020. "Scaling features of price–volume cross correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Zhou, Hao & Elliott, Robert J. & Kalev, Petko S., 2019. "Information or noise: What does algorithmic trading incorporate into the stock prices?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 27-39.
    7. Li, Hong & Shi, Yanlin, 2021. "A new unique information share measure with applications on cross-listed Chinese banks," Journal of Banking & Finance, Elsevier, vol. 128(C).
    8. Duong, Huu Nhan & Kalev, Petko S. & Tian, Xiao Jason, 2022. "Does the bid–ask spread affect trading in exchange operated dark pools? Evidence from a natural experiment," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Kuck, Konstantin & Schweikert, Karsten, 2023. "Price discovery in equity markets: A state-dependent analysis of spot and futures markets," Journal of Banking & Finance, Elsevier, vol. 149(C).
    10. Gustavo Fruet Dias & Marcelo Fernandes & Cristina M. Scherrer, 2016. "Component shares in continuous time," CREATES Research Papers 2016-25, Department of Economics and Business Economics, Aarhus University.
    11. Hong Li & Yanlin Shi, 2022. "Robust information share measures with an application on the international crude oil markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 555-579, April.
    12. Lien, Donald & Hung, Pi-Hsia & Lin, Zong-Wei, 2020. "Whose trades move stock prices? Evidence from the Taiwan Stock Exchange," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 25-50.
    13. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    14. Dias, Gustavo Fruet & Fernandes, Marcelo & Scherrer, Cristina Mabel, 2017. "Improving on daily measures of price discovery," Textos para discussão 444, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    15. Donald Lien & Zijun Wang, 2016. "Estimation of Market Information Shares: A Comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(11), pages 1108-1124, November.
    16. Anastasios Demertzidis, 2019. "Interbank transactions on the intraday frequency: -Different market states and the effects of the financial crisis-," MAGKS Papers on Economics 201932, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    17. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.
    18. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    19. Sobti, Neharika & Sehgal, Sanjay & Ilango, Balakrishnan, 2021. "How do macroeconomic news surprises affect round-the-clock price discovery of gold?," International Review of Financial Analysis, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    2. Donald Lien & Zijun Wang, 2016. "Estimation of Market Information Shares: A Comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(11), pages 1108-1124, November.
    3. Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    4. Hou, Yang & Li, Steven, 2017. "Time-Varying Price Discovery and Autoregressive Loading Factors: Evidence from S&P 500 Cash and E-Mini Futures Markets," MPRA Paper 81999, University Library of Munich, Germany.
    5. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    6. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    7. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Hou, Yang & Nartea, Gilbert, 2017. "Price Discovery in the Stock Index Futures Market: Evidence from the Chinese stock market crash," MPRA Paper 81995, University Library of Munich, Germany.
    9. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    10. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6-2015, January-A.
    11. Fricke, Christoph & Menkhoff, Lukas, 2011. "Does the "Bund" dominate price discovery in Euro bond futures? Examining information shares," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1057-1072, May.
    12. Santos, Francisco Luna & Garcia, Márcio Gomes Pinto & Medeiros, Marcelo Cunha, 2015. "Price Discovery in Brazilian FX Markets," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    13. Christoph Schmidhammer & Sebastian Lobe & Klaus Röder, 2016. "The day the index rose 11 %: a clinical study on price discovery reversal," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 79-106, January.
    14. Mizrach, Bruce & Neely, Christopher J., 2008. "Information shares in the US Treasury market," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1221-1233, July.
    15. Wang, Jianxin & Yang, Minxian, 2011. "Housewives of Tokyo versus the gnomes of Zurich: Measuring price discovery in sequential markets," Journal of Financial Markets, Elsevier, vol. 14(1), pages 82-108, February.
    16. Joakim Westerlund & Simon Reese & Paresh Narayan, 2017. "A Factor Analytical Approach to Price Discovery," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 366-394, June.
    17. Yang Hou & Steven Li & Fenghua Wen, 2021. "Time-varying information share and autoregressive loading factors: evidence from S&P 500 cash and E-mini futures markets," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 91-110, July.
    18. Karsten Schweikert, 2021. "Bootstrap Confidence Intervals and Hypothesis Testing for Market Information Shares [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 934-959.
    19. Mehdi Arzandeh & Julieta Frank, 2019. "Price Discovery in Agricultural Futures Markets: Should We Look beyond the Best Bid-Ask Spread?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(5), pages 1482-1498.
    20. Helder Sebastião, 2012. "The Relative Contemporaneous Information Response: A New Cointegration-Based Measure of Price Discovery," GEMF Working Papers 2012-04, GEMF, Faculty of Economics, University of Coimbra.

    More about this item

    Keywords

    High-frequency data; Market microstructure; Price Discovery; Kalman filter;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20140027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.