IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.3386.html
   My bibliography  Save this paper

Small-time expansions for local jump-diffusion models with infinite jump activity

Author

Listed:
  • Jos'e E. Figueroa-L'opez
  • Yankeng Luo
  • Cheng Ouyang

Abstract

We consider a Markov process $X$, which is the solution of a stochastic differential equation driven by a L\'{e}vy process $Z$ and an independent Wiener process $W$. Under some regularity conditions, including non-degeneracy of the diffusive and jump components of the process as well as smoothness of the L\'{e}vy density of $Z$ outside any neighborhood of the origin, we obtain a small-time second-order polynomial expansion for the tail distribution and the transition density of the process $X$. Our method of proof combines a recent regularizing technique for deriving the analog small-time expansions for a L\'{e}vy process with some new tail and density estimates for jump-diffusion processes with small jumps based on the theory of Malliavin calculus, flow of diffeomorphisms for SDEs, and time-reversibility. As an application, the leading term for out-of-the-money option prices in short maturity under a local jump-diffusion model is also derived.

Suggested Citation

  • Jos'e E. Figueroa-L'opez & Yankeng Luo & Cheng Ouyang, 2011. "Small-time expansions for local jump-diffusion models with infinite jump activity," Papers 1108.3386, arXiv.org, revised Jul 2014.
  • Handle: RePEc:arx:papers:1108.3386
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.3386
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    4. Sergei Levendorskiǐ, 2008. "American and European options in multi-factor jump-diffusion models, near expiry," Finance and Stochastics, Springer, vol. 12(4), pages 541-560, October.
    5. Jose E. Figueroa-Lopez & Martin Forde, 2011. "The small-maturity smile for exponential Levy models," Papers 1105.3180, arXiv.org, revised Dec 2011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jos'e E. Figueroa-L'opez & Yankeng Luo, 2015. "Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity," Papers 1505.04459, arXiv.org, revised Dec 2015.
    2. Figueroa-López, José E. & Luo, Yankeng, 2018. "Small-time expansions for state-dependent local jump–diffusion models with infinite jump activity," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4207-4245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figueroa-López, José E. & Gong, Ruoting & Houdré, Christian, 2012. "Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1808-1839.
    2. Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market instability and technical trading at high frequency: Evidence from NASDAQ stocks," Economic Modelling, Elsevier, vol. 102(C).
    3. Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2020. "High-Frequency Jump Analysis of the Bitcoin Market," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 209-232.
    4. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    5. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    6. Diep Duong & Norman R. Swanson, 2011. "Empirical Evidence on Jumps and Large Fluctuations in Individual Stocks," Departmental Working Papers 201116, Rutgers University, Department of Economics.
    7. Álvaro Cartea & Dimitrios Karyampas, 2016. "The Relationship between the Volatility of Returns and the Number of Jumps in Financial Markets," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 929-950, June.
    8. Jos'e E. Figueroa-L'opez & Cecilia Mancini, 2017. "Optimum thresholding using mean and conditional mean square error," Papers 1708.04339, arXiv.org.
    9. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    10. Peter Friz & Stefan Gerhold & Arpad Pinter, 2016. "Option Pricing in the Moderate Deviations Regime," Papers 1604.01281, arXiv.org.
    11. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    12. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    13. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    14. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    15. Martin, Ryan & Ouyang, Cheng & Domagni, Francois, 2018. "‘Purposely misspecified’ posterior inference on the volatility of a jump diffusion process," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 106-113.
    16. Zhou, Haigang & Zhu, John Qi, 2019. "Firm characteristics and jump dynamics in stock prices around earnings announcements," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    17. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
    18. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    19. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    20. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.3386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.