IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v61y2015is2ps205-s224.html
   My bibliography  Save this article

Estimating the price impact of trades in a high-frequency microstructure model with jumps

Author

Listed:
  • Jondeau, Eric
  • Lahaye, Jérôme
  • Rockinger, Michael

Abstract

We estimate a general microstructure model of the transitory and permanent impact of order flow on stock prices. Jumps are detected in both the transaction price (observation equation) and fundamental value (state equation). The model’s parameters and variances are updated in real time. Prices can be altered by both the size and direction of trades, and the effects of buy-initiated and sell-initiated trades are different. We estimate this model using tick-by-tick data for 12 large-capitalization stocks traded on the Euronext-Paris Bourse. We find that, at tick frequency, the overnight return, the intraday jumps, and the continuous innovations represent approximately 7%,8.5%, and 36.7% of the total variation of stock returns. The microstructure model explains on average 47.7% of the total variation. Once jumps are filtered and parameters are estimated in real time, we also find that the price impact of trades is symmetric on average. However, the price of highly liquid stocks with a large proportion of sell-initiated orders tends to be more sensitive to buy trades, whereas the price of less liquid stocks with a large proportion of buy-initiated orders tends to be more sensitive to sell trades.

Suggested Citation

  • Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
  • Handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s205-s224
    DOI: 10.1016/j.jbankfin.2015.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426615002629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2015.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    3. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    5. Holthausen, Robert W. & Leftwich, Richard W. & Mayers, David, 1987. "The effect of large block transactions on security prices: A cross-sectional analysis," Journal of Financial Economics, Elsevier, vol. 19(2), pages 237-267, December.
    6. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    7. Foster, F Douglas & Viswanathan, S, 1993. "Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models," Journal of Finance, American Finance Association, vol. 48(1), pages 187-211, March.
    8. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    9. de Jong, F.C.J.M. & Nijman, T.E. & Röell, A.A., 1996. "Price effects of trading and components of the bid-ask spread on the Paris Bourse," Other publications TiSEM 08f5fa19-14b7-4bc8-ba07-1, Tilburg University, School of Economics and Management.
    10. Keim, Donald B. & Madhavan, Ananth, 1995. "Anatomy of the trading process Empirical evidence on the behavior of institutional traders," Journal of Financial Economics, Elsevier, vol. 37(3), pages 371-398, March.
    11. Thierry Foucault & Sophie Moinas & Erik Theissen, 2007. "Does Anonymity Matter in Electronic Limit Order Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1707-1747, 2007 28.
    12. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    13. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    14. Frijns, Bart & Schotman, Peter, 2009. "Price discovery in tick time," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 759-776, December.
    15. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    16. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    17. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 2-25.
    18. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    19. Sadka, Ronnie, 2006. "Momentum and post-earnings-announcement drift anomalies: The role of liquidity risk," Journal of Financial Economics, Elsevier, vol. 80(2), pages 309-349, May.
    20. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    21. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    22. Allaudeen Hameed & Wenjin Kang & S. Viswanathan, 2010. "Stock Market Declines and Liquidity," Journal of Finance, American Finance Association, vol. 65(1), pages 257-293, February.
    23. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    24. Madhavan, Ananth & Smidt, Seymour, 1991. "A Bayesian model of intraday specialist pricing," Journal of Financial Economics, Elsevier, vol. 30(1), pages 99-134, November.
    25. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    26. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    27. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Usman Arief & Zaäfri Ananto Husodo, 2021. "Private Information from Extreme Price Movements (Empirical Evidences from Southeast Asia Countries)," International Symposia in Economic Theory and Econometrics, in: Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics, volume 28, pages 221-242, Emerald Group Publishing Limited.
    3. Stübinger, Johannes & Walter, Dominik & Knoll, Julian, 2017. "Financial market predictions with Factorization Machines: Trading the opening hour based on overnight social media data," FAU Discussion Papers in Economics 19/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Christopher Krauss & Klaus Herrmann, 2017. "On the Power and Size Properties of Cointegration Tests in the Light of High-Frequency Stylized Facts," JRFM, MDPI, vol. 10(1), pages 1-24, February.
    5. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    7. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    11. Chiyachantana, Chiraphol & Jain, Pankaj K. & Jiang, Christine & Sharma, Vivek, 2017. "Permanent price impact asymmetry of trades with institutional constraints," Journal of Financial Markets, Elsevier, vol. 36(C), pages 1-16.
    12. Pham, Manh Cuong & Anderson, Heather Margot & Duong, Huu Nhan & Lajbcygier, Paul, 2020. "The effects of trade size and market depth on immediate price impact in a limit order book market," Journal of Economic Dynamics and Control, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    2. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    3. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    4. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    5. G. Wuyts, 2007. "Stock Market Liquidity.Determinants and Implications," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 279-316.
    6. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    7. Bowe, Michael & Hyde, Stuart & McFarlane, Lavern, 2013. "Duration, trading volume and the price impact of trades in an emerging futures market," Emerging Markets Review, Elsevier, vol. 17(C), pages 89-105.
    8. Pascual, Roberto, 1999. "How does liquidity behave? A multidimensional analysis of NYSE stocks," DEE - Working Papers. Business Economics. WB 6433, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    9. Ibrahim, Boulis Maher & Kalaitzoglou, Iordanis Angelos, 2016. "Why do carbon prices and price volatility change?," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 76-94.
    10. Pascual, Roberto & Escribano, Alvaro & Tapia, Mikel, 2004. "Adverse selection costs, trading activity and price discovery in the NYSE: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 28(1), pages 107-128, January.
    11. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    12. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    13. Pascual, Roberto, 2000. "Adverse selection costs, trading activity and liquidity in the NYSE: an empirical analysis in a dynamic context," UC3M Working papers. Economics 7276, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Cenesizoglu, Tolga & Grass, Gunnar, 2018. "Bid- and ask-side liquidity in the NYSE limit order book," Journal of Financial Markets, Elsevier, vol. 38(C), pages 14-38.
    15. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    16. Alzahrani, Ahmed A. & Gregoriou, Andros & Hudson, Robert, 2013. "Price impact of block trades in the Saudi stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 23(C), pages 322-341.
    17. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
    18. Sadka, Ronnie, 2006. "Momentum and post-earnings-announcement drift anomalies: The role of liquidity risk," Journal of Financial Economics, Elsevier, vol. 80(2), pages 309-349, May.
    19. repec:uts:finphd:34 is not listed on IDEAS
    20. Jun (Tony) Ruan & Tongshu Ma, 2017. "Bid-Ask Spread, Quoted Depths, and Unexpected Duration Between Trades," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 385-436, June.
    21. Oehler, Andreas & Häcker, Mirko, 2003. "Kurseinfluss mittlerer und großer Transaktionen am deutschen Aktienmarkt," Discussion Papers 20, University of Bamberg, Chair of Finance.

    More about this item

    Keywords

    Microstructure model; Jumps; Noise; Volatility; Kalman filter; Particle filter;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s205-s224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.