IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v17y2009i1p58-79.html
   My bibliography  Save this article

Market imperfections and the information content of implied and realized volatility

Author

Listed:
  • Wong, Woon K.
  • Tu, Anthony H.

Abstract

The information content of option implied volatility and realized volatility under market imperfections are studied in the context of GARCH modeling and volatility forecasts of Taiwan stock market (TAIEX) returns. Consistent with most studies, we find that the Taiwan implied volatility index (TVIX) calculated from the TAIEX option prices contains most of the information, and that White's [White, H., 2000. A reality check for data snooping. Econometrica 68, 1097-1126] reality check test cannot reject the null hypothesis that the TVIX provides the best forecast. Possibly due to market imperfections, however, the incremental information content of realized volatility as well as daily returns cannot be ruled out. Finally, we also find that the information is found only in the most recent TVIX, indicating information is being efficiently impounded on the TAIEX option prices. This finding suggests that appropriately designed derivative products can alleviate the problems caused by market imperfections.

Suggested Citation

  • Wong, Woon K. & Tu, Anthony H., 2009. "Market imperfections and the information content of implied and realized volatility," Pacific-Basin Finance Journal, Elsevier, vol. 17(1), pages 58-79, January.
  • Handle: RePEc:eee:pacfin:v:17:y:2009:i:1:p:58-79
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-538X(08)00002-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Chang, Eric C. & McQueen, Grant R. & Pinegar, J. Michael, 1999. "Cross-autocorrelation in Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(5), pages 471-493, December.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    5. Cho, David D. & Russell, Jeffrey & Tiao, George C. & Tsay, Ruey, 2003. "The magnet effect of price limits: evidence from high-frequency data on Taiwan Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 133-168, February.
    6. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    7. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    12. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    13. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    14. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    15. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    16. Chiao, Chaoshin & Hung, Ken & Lee, Cheng F., 2004. "The price adjustment and lead-lag relations between stock returns: microstructure evidence from the Taiwan stock market," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 709-731, December.
    17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    18. Wong, Woon K. & Chang, Matthew C. & Tu, Anthony H., 2009. "Are magnet effects caused by uninformed traders? Evidence from Taiwan Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 17(1), pages 28-40, January.
    19. Pierre Giot, 2003. "The information content of implied volatility in agricultural commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(5), pages 441-454, May.
    20. Figlewski, Stephen & Webb, Gwendolyn P, 1993. "Options, Short Sales, and Market Completeness," Journal of Finance, American Finance Association, vol. 48(2), pages 761-777, June.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    22. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    24. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    25. Kim, Kenneth & Rhee, S Ghon, 1997. "Price Limit Performance: Evidence from the Tokyo Stock Exchange," Journal of Finance, American Finance Association, vol. 52(2), pages 885-899, June.
    26. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    27. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    28. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    29. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    30. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fassas, Athanasios P. & Siriopoulos, Costas, 2021. "Implied volatility indices – A review," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 303-329.
    2. Imlak Shaikh & Puja Padhi, 2013. "On the Linkages among Ex-ante and Ex-post Volatility: Evidence from NSE Options Market (India)," Global Business Review, International Management Institute, vol. 14(3), pages 487-505, September.
    3. Puja Padhi & Imlak Shaikh, 2014. "On the relationship of implied, realized and historical volatility: evidence from NSE equity index options," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(5), pages 915-934, November.
    4. Jun-Biao Lin, 2015. "Hedging Strategy Comparisons Of Volatility Index Options Using Diffusion Models," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 9(3), pages 59-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    3. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    4. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    5. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    6. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    7. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
    8. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    9. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    10. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    11. Adrian Fernandez‐Perez & Bart Frijns & Ilnara Gafiatullina & Alireza Tourani‐Rad, 2019. "Properties and the predictive power of implied volatility in the New Zealand dairy market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 612-631, May.
    12. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    13. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    14. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.
    15. Turan G. Bali & Lin Peng, 2006. "Is there a risk–return trade‐off? Evidence from high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198, December.
    16. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    17. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    18. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    20. Turan Bali, 2007. "Modeling the dynamics of interest rate volatility with skewed fat-tailed distributions," Annals of Operations Research, Springer, vol. 151(1), pages 151-178, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:17:y:2009:i:1:p:58-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.