IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v25y2024i2d10.1057_s41260-023-00347-8.html
   My bibliography  Save this article

Network Risk Parity: graph theory-based portfolio construction

Author

Listed:
  • Vito Ciciretti
  • Alberto Pallotta

    (Middlesex University)

Abstract

This study presents network risk parity, a graph theory-based portfolio construction methodology that arises from a thoughtful critique of the clustering-based approach used by hierarchical risk parity. Advantages of network risk parity include: the ability to capture one-to-many relationships between securities, overcoming the one-to-one limitation; the capacity to leverage the mathematics of graph theory, which enables us, among other things, to demonstrate that the resulting portfolios is less concentrated than those obtained with mean-variance; and the ability to simplify the model specification by eliminating the dependency on the selection of a distance and linkage function. Performance-wise, due to a better representation of systematic risk within the minimum spanning tree, network risk parity outperforms hierarchical risk parity and other competing methods, especially as the number of portfolio constituents increases.

Suggested Citation

  • Vito Ciciretti & Alberto Pallotta, 2024. "Network Risk Parity: graph theory-based portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 25(2), pages 136-146, March.
  • Handle: RePEc:pal:assmgt:v:25:y:2024:i:2:d:10.1057_s41260-023-00347-8
    DOI: 10.1057/s41260-023-00347-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41260-023-00347-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41260-023-00347-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    3. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciciretti, Vito & Bucci, Andrea, 2023. "Building optimal regime-switching portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    2. Deev, Oleg & Lyócsa, Štefan, 2020. "Connectedness of financial institutions in Europe: A network approach across quantiles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Hu, Sunyang & Gu, Zongyuan & Wang, Yifeng & Zhang, Xiaolei, 2019. "An analysis of the clustering effect of a jump risk complex network in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 622-630.
    4. Wang, Yifu & Lu, Wanbo & Lin, Min-Bin & Ren, Rui & Härdle, Wolfgang Karl, 2024. "Cross-exchange crypto risk: A high-frequency dynamic network perspective," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Zhong, Yannan & Xu, Weijun & Li, Hongyi & Zhong, Weiwei, 2024. "Distributed mean reversion online portfolio strategy with stock network," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1143-1158.
    6. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    7. Nicolás Magner & Jaime F. Lavín & Mauricio A. Valle, 2022. "Modeling Synchronization Risk among Sustainable Exchange Trade Funds: A Statistical and Network Analysis Approach," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
    8. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    9. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    10. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    11. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    12. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    13. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    14. Shamshuritawati Sharif, 2012. "Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 6(12), pages 1-91, December.
    15. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    16. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    17. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    18. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    19. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    20. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Portfolio construction; Graph theory; Hierarchical clustering; Eigenvalues;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:25:y:2024:i:2:d:10.1057_s41260-023-00347-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.