IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0212249.html
   My bibliography  Save this paper

Pseudo-diffusions and Quadratic term structure models

Author

Listed:
  • Sergei Levendorskii

Abstract

The non-gaussianity of processes observed in financial markets and relatively good performance of gaussian models can be reconciled by replacing the Brownian motion with Levy processes whose Levy densities decay as exp(-lambda|x|) or faster, where lambda>0 is large. This leads to asymptotic pricing models. The leading term, P0, is the price in the Gaussian model with the same instantaneous drift and variance. The first correction term depends on the instantaneous moments of order up to three, that is, the skewness is taken into account, the next term depends on moments of order four (kurtosis) as well, etc. In empirical studies, the asymptotic formula can be applied without explicit specification of the underlying process: it suffices to assume that the instantaneous moments of order greater than two are small w.r.t. moments of order one and two, and use empirical data on moments of order up to three or four. As an application, the bond pricing problem in the non-Gaussian quadratic term structure model is solved. For pricing of options near expiry, a different set of asymptotic formulas is developed; they require more detailed specification of the process, especially of its jump part. The leading terms of these formulas depends on the jump part of the process only, so that they can be used in empirical studies to identify the jump characteristics of the process.

Suggested Citation

  • Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.
  • Handle: RePEc:arx:papers:cond-mat/0212249
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0212249
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    3. Li Chen & H. Vincent Poor, 2002. "A General Characterization of Quadratic Term Structure Models," Finance 0211008, University Library of Munich, Germany.
    4. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    5. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    6. Svetlana I. Boyarchenko & Sergei Z. Levendorskiĭ, 2002. "Barrier options," World Scientific Book Chapters, in: Non-Gaussian Merton-Black-Scholes Theory, chapter 8, pages 185-198, World Scientific Publishing Co. Pte. Ltd..
    7. Ahn, Dong-Hyun & Dittmar, Robert F. & Gallant, A. Ronald & Gao, Bin, 2003. "Purebred or hybrid?: Reproducing the volatility in term structure dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 147-180.
    8. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    9. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Andrew Matacz, 2000. "Financial Modeling And Option Theory With The Truncated Levy Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 143-160.
    12. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    13. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    14. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    15. Svetlana I. Boyarchenko & Sergei Z. Levendorskiĭ, 2002. "Perpetual American options," World Scientific Book Chapters, in: Non-Gaussian Merton-Black-Scholes Theory, chapter 5, pages 121-149, World Scientific Publishing Co. Pte. Ltd..
    16. Svetlana I. Boyarchenko & Sergei Z. Levendorskiĭ, 2002. "Lévy processes," World Scientific Book Chapters, in: Non-Gaussian Merton-Black-Scholes Theory, chapter 2, pages 39-66, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    2. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. Nawalkha, Sanjay K & Zhuo, Xiaoyang, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," OSF Preprints hsxtu, Center for Open Science.
    6. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    8. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    9. Sergei Levendorskii, 2004. "The American put and European options near expiry, under Levy processes," Papers cond-mat/0404103, arXiv.org.
    10. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    11. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2011. "High-order short-time expansions for ATM option prices under the CGMY model," Papers 1112.3111, arXiv.org, revised Aug 2012.
    12. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    13. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    16. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    17. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    18. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    19. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    20. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0212249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.