IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202418.html
   My bibliography  Save this paper

Nonconvex High-Dimensional Time-Varying Coefficient Estimation for Noisy High-Frequency Observations with a Factor Structure

Author

Listed:
  • Donggyu Kim

    (Department of Economics, University of California Riverside)

  • Minseok Shin

Abstract

In this paper, we propose a novel high-dimensional time-varying coefficient estimator for noisy high-frequency observations with a factor structure. In high-frequency finance, we often observe that noises dominate the signal of underlying true processes and that covariates exhibit a factor structure due to their strong dependence. Thus, we cannot apply usual regression procedures to analyze high-frequency observations. To handle the noises, we first employ a smoothing method for the observed dependent and covariate processes. Then, to handle the strong dependence of the covariate processes, we apply Principal Component Analysis (PCA) and transform the highly correlated covariate structure into a weakly correlated structure. However, the variables from PCA still contain non-negligible noises. To manage these non negligible noises and the high dimensionality, we propose a nonconvex penalized regression method for each local coefficient. This method produces consistent but biased local coefficient estimators. To estimate the integrated coefficients, we propose a debiasing scheme and obtain a debiased integrated coefficient estimator using debiased local coefficient estimators. Then, to further account for the sparsity structure of the coefficients, we apply a thresholding scheme to the debiased integrated coefficient estimator. We call this scheme the Factor Adjusted Thresholded dEbiased Nonconvex LASSO (FATEN-LASSO) estimator. Furthermore, this paper establishes the concentration properties of the FATEN-LASSO estimator and discusses a nonconvex optimization algorithm.

Suggested Citation

  • Donggyu Kim & Minseok Shin, 2024. "Nonconvex High-Dimensional Time-Varying Coefficient Estimation for Noisy High-Frequency Observations with a Factor Structure," Working Papers 202418, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:202418
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202418.pdf
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.