IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v16y2013i2p135-165.html
   My bibliography  Save this article

The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques

Author

Listed:
  • Susanne Griebsch

Abstract

Compound options are not only sensitive to future movements of the underlying asset price, but also to future changes in volatility levels. Because the Black–Scholes analytical valuation formula for compound options is not able to incorporate the sensitivity to volatility, the aim of this paper is to develop a numerical pricing procedure for this type of option in stochastic volatility models, specifically focusing on the model of Heston. For this, the compound option value is represented as the difference of its exercise probabilities, which depend on three random variables through a complex functional form. Then the joint distribution of these random variables is uniquely determined by their characteristic function and therefore the probabilities can each be expressed as a multiple inverse Fourier transform. Solving the inverse Fourier transform with respect to volatility, we can reduce the pricing problem from three to two dimensions. This reduced dimensionality simplifies the application of the fast Fourier transform (FFT) method developed by Dempster and Hong when transferred to our stochastic volatility framework. After combining their approach with a new extension of the fractional FFT technique for option pricing to the two-dimensional case, it is possible to obtain good approximations to the exercise probabilities. The resulting upper and lower bounds are then compared with other numerical methods such as Monte Carlo simulations and show promising results. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Susanne Griebsch, 2013. "The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques," Review of Derivatives Research, Springer, vol. 16(2), pages 135-165, July.
  • Handle: RePEc:kap:revdev:v:16:y:2013:i:2:p:135-165
    DOI: 10.1007/s11147-012-9083-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-012-9083-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-012-9083-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:43:y:1988:i:5:p:1235-56 is not listed on IDEAS
    2. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    3. Susanne Griebsch & Uwe Wystup, 2011. "Quantitative Finance, Vol. 11, No. 5, May 2011, 693-709 On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1271-1271.
    4. Carl Chiarella & Boda Kang, 2009. "The Evaluation of American Compound Option Prices Under Stochastic Volatility Using the Sparse Grid Approach," Research Paper Series 245, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    8. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    9. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(4), pages 519-529, December.
    10. Brenner, Menachem & Ou, Ernest Y. & Zhang, Jin E., 2006. "Hedging volatility risk," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 811-821, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    2. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    3. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    4. Wang, Xiandong & He, Jianmin, 2017. "A simple method for generalized sequential compound options pricing," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 85-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    3. Carl Chiarella & Susanne Griebsch & Boda Kang, 2013. "Investigating Time-Efficient Methods to Price Compound Options in the Heston Model," Research Paper Series 328, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Carl Chiarella & Boda Kang, 2009. "The Evaluation of American Compound Option Prices Under Stochastic Volatility Using the Sparse Grid Approach," Research Paper Series 245, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Zhylyevskyy, Oleksandr, 2012. "Joint Characteristic Function of Stock Log-Price and Squared Volatility in the Bates Model and Its Asset Pricing Applications," Staff General Research Papers Archive 35559, Iowa State University, Department of Economics.
    6. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    9. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    10. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    11. Ming-Chi Chang & Yuan-Chung Sheu & Ming-Yao Tsai, 2015. "Pricing Perpetual American Compound Options under a Matrix-Exponential Jump-Diffusion Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(6), pages 553-575, December.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    14. Wang, Xiandong & He, Jianmin, 2017. "A simple method for generalized sequential compound options pricing," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 85-91.
    15. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    16. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    17. Chung, Y. Peter & Johnson, Herb, 2011. "Extendible options: The general case," Finance Research Letters, Elsevier, vol. 8(1), pages 15-20, March.
    18. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    19. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    20. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.

    More about this item

    Keywords

    Compound options; Heston model; Fourier transform techniques; Characteristic functions; G13; C63;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:16:y:2013:i:2:p:135-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.