IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v20y2016i1p19-36n3.html
   My bibliography  Save this article

Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data

Author

Listed:
  • Lee Kyungsub

    (UNIST – School of Business Administration, Ulsan, Republic of Korea)

Abstract

We discuss the probabilistic properties of the variation based third and fourth moments of financial returns as estimators of the actual moments of the return distributions. The moment variations are defined under non-parametric assumptions with quadratic variation method but for the computational tractability, we use a square root stochastic volatility model for the derivations of moment conditions for estimations. Using the S&P 500 index high frequency data, the realized versions of the moment variations is used for the estimation of a stochastic volatility model. We propose a simple estimation method of a stochastic volatility model using the sample averages of the variations and ARMA estimation. In addition, we compare the results with a generalized method of moments estimation based on the successive relation between realized moments and their lagged values.

Suggested Citation

  • Lee Kyungsub, 2016. "Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 19-36, February.
  • Handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:19-36:n:3
    DOI: 10.1515/snde-2014-0037
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2014-0037
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2014-0037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    2. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    3. Jacinto Marabel Romo, 2014. "Pricing Forward Skew Dependent Derivatives. Multifactor Versus Single‐Factor Stochastic Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(2), pages 124-144, February.
    4. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    7. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    8. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    9. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    10. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyungsub Lee, 2013. "Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data," Papers 1311.5036, arXiv.org, revised Jul 2015.
    2. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    3. Kyungsub Lee & Byoung Ki Seo, 2017. "Performance of Tail Hedged Portfolio with Third Moment Variation Swap," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 447-471, October.
    4. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    5. Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Working Papers in Economics 11/11, University of Canterbury, Department of Economics and Finance.
    6. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    7. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    9. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, New Economic School (NES).
    10. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    11. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    12. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    13. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Massimo Guidolin & Erwin Hansen & Gabriel Cabrera, 2023. "Time-Varying Risk Aversion and International Stock Returns," BAFFI CAREFIN Working Papers 23203, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    15. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    16. Geon Ho Choe & Kyungsub Lee, 2013. "High moment variations and their application," Papers 1311.4973, arXiv.org.
    17. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:19-36:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.