IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v234y2020i1p41-51.html
   My bibliography  Save this article

State estimation for the electro-hydraulic actuator based on particle filter with an improved resampling technique

Author

Listed:
  • Runxia Guo
  • Zhile Wei
  • Ye Wei

Abstract

State estimation for the electro-hydraulic actuator of civil aircraft is one of the most valuable but intractable issues. Recently, the state estimation approach based on particle filters has widely attracted attention. We pursue the benefits of the data-driven approach when physical model is deficienct, and put forward some improvements that are triggered by the shortcomings of particle filters algorithm. In order to solve the particles’ degeneracy phenomenon in particle filters, a kernel function that integrates the information of probability distribution is constructed; then, the established probability kernel function is designed to represent the probability density function of resampling and the regularization form of probability density function in Hilbert space is defined. Consequently, the probability density function of resampling is obtained by solving the support vector regression model. The novel resampling method based on support vector regression-particle filters can keep the diversity of particles as well as relieve the degeneracy phenomenon and eventually make the estimated state more realistic. The approach is simulated and applied to an electro-hydraulic actuator model. The estimation results validate the effectiveness of the proposed algorithm.

Suggested Citation

  • Runxia Guo & Zhile Wei & Ye Wei, 2020. "State estimation for the electro-hydraulic actuator based on particle filter with an improved resampling technique," Journal of Risk and Reliability, , vol. 234(1), pages 41-51, February.
  • Handle: RePEc:sae:risrel:v:234:y:2020:i:1:p:41-51
    DOI: 10.1177/1748006X19871753
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19871753
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19871753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
    2. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    2. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    3. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating nonlinear dynamic equilibrium economies: a likelihood approach," FRB Atlanta Working Paper 2004-1, Federal Reserve Bank of Atlanta.
    5. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    6. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    8. Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006. "Volatility comovement: a multifrequency approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
    9. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.
    10. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    11. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    12. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    13. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    15. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    16. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.
    17. Hasbrouck, Joel, 1999. "Security bid/ask dynamics with discreteness and clustering: Simple strategies for modeling and estimation1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 1-28, February.
    18. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    19. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.
    20. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:234:y:2020:i:1:p:41-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.