IDEAS home Printed from https://ideas.repec.org/p/tas/wpaper/32412.html
   My bibliography  Save this paper

Forecasting natural gas prices using highly flexible time-varying parameter models

Author

Abstract

The growing disintegration between the natural gas and oil prices, together with shale revolution and market financialization, lead to continued fundamental changes in the natural gas markets. To capture these structural changes, this paper considers a wide set of highly flexible time-varying parameter models to evaluate the out-of-sample forecasting performance of the natural gas spot prices across the US, European and Japanese markets. The results show that for both Japan and EU markets, the best forecasting performance is found when the model allows for drastic changes in the conditional mean and gradual changes in the conditional volatility. For the US market, however, no model performs systematically better than the simple autoregressive model. Full sample estimation results further con- firm that allowing t-distributed error is important in modelling the natural gas prices, especially for EU markets.

Suggested Citation

  • Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
  • Handle: RePEc:tas:wpaper:32412
    as

    Download full text from publisher

    File URL: https://eprints.utas.edu.au/32412/1/2020-01_Gao_Hou_Nguyen.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apergis, Nicholas & Bowden, Nicholas & Payne, James E., 2015. "Downstream integration of natural gas prices across U.S. states: Evidence from deregulation regime shifts," Energy Economics, Elsevier, vol. 49(C), pages 82-92.
    2. Shi, Xunpeng & Variam, Hari M.P., 2017. "East Asia’s gas-market failure and distinctive economics—A case study of low oil prices," Applied Energy, Elsevier, vol. 195(C), pages 800-809.
    3. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Carriero, Andrea & Galvão, Ana Beatriz & Kapetanios, George, 2019. "A comprehensive evaluation of macroeconomic forecasting methods," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1226-1239.
    6. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    7. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    8. Hamid Abrishami & Vida Varahrami, 2011. "Different methods for gas price forecasting," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(96), pages 137-144, Diciembre.
    9. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    10. Wakamatsu, Hiroki & Aruga, Kentaka, 2013. "The impact of the shale gas revolution on the U.S. and Japanese natural gas markets," Energy Policy, Elsevier, vol. 62(C), pages 1002-1009.
    11. Caporin, Massimiliano & Fontini, Fulvio, 2017. "The long-run oil–natural gas price relationship and the shale gas revolution," Energy Economics, Elsevier, vol. 64(C), pages 511-519.
    12. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    13. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    14. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    15. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
    16. Vipin Arora and Jozef Lieskovsky, 2014. "Natural Gas and U.S. Economic Activity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    18. Zhang, Dayong & Wang, Tiantian & Shi, Xunpeng & Liu, Jia, 2018. "Is hub-based pricing a better choice than oil indexation for natural gas? Evidence from a multiple bubble test," Energy Economics, Elsevier, vol. 76(C), pages 495-503.
    19. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    20. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    21. Bastianin, Andrea & Galeotti, Marzio & Polo, Michele, 2019. "Convergence of European natural gas prices," Energy Economics, Elsevier, vol. 81(C), pages 793-811.
    22. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    23. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
    24. Hou, Chenghan & Nguyen, Bao H., 2018. "Understanding the US natural gas market: A Markov switching VAR approach," Energy Economics, Elsevier, vol. 75(C), pages 42-53.
    25. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
    26. Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2019. "The nexus between the oil price and its volatility risk in a stochastic volatility in the mean model with time-varying parameters," Resources Policy, Elsevier, vol. 61(C), pages 572-584.
    27. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    28. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    29. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    30. Anna Creti & Duc Khuong Nguyen, 2015. "Energy markets׳ financialization, risk spillovers, and pricing models," Post-Print hal-01517413, HAL.
    31. Buchanan, W. K. & Hodges, P. & Theis, J., 2001. "Which way the natural gas price: an attempt to predict the direction of natural gas spot price movements using trader positions," Energy Economics, Elsevier, vol. 23(3), pages 279-293, May.
    32. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    33. repec:dau:papers:123456789/14774 is not listed on IDEAS
    34. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    35. Stern, Jonathan, 2014. "International gas pricing in Europe and Asia: A crisis of fundamentals," Energy Policy, Elsevier, vol. 64(C), pages 43-48.
    36. Mishra, Vinod & Smyth, Russell, 2016. "Are natural gas spot and futures prices predictable?," Economic Modelling, Elsevier, vol. 54(C), pages 178-186.
    37. MacAvoy, Paul W. & Moshkin, Nickolay V., 2000. "The new long-term trend in the price of natural gas," Resource and Energy Economics, Elsevier, vol. 22(4), pages 315-338, October.
    38. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    39. Wiggins, Seth & Etienne, Xiaoli L., 2017. "Turbulent times: Uncovering the origins of US natural gas price fluctuations since deregulation," Energy Economics, Elsevier, vol. 64(C), pages 196-205.
    40. Chenghan Hou & Bao H. Nguyen, 2018. "Understanding the US natural gas market: A Markov switching VAR approach," CAMA Working Papers 2018-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    41. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    42. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    43. Zhang, Dayong & Ji, Qiang, 2018. "Further evidence on the debate of oil-gas price decoupling: A long memory approach," Energy Policy, Elsevier, vol. 113(C), pages 68-75.
    44. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    2. Szafranek Karol & Rubaszek Michał, 2024. "Have European natural gas prices decoupled from crude oil prices? Evidence from TVP-VAR analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 507-530.
    3. Wang, Tiantian & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Market reforms and determinants of import natural gas prices in China," Energy, Elsevier, vol. 196(C).
    4. Rubaszek, Michał & Uddin, Gazi Salah, 2020. "The role of underground storage in the dynamics of the US natural gas market: A threshold model analysis," Energy Economics, Elsevier, vol. 87(C).
    5. Miao, Xiaoyu & Wang, Qunwei & Dai, Xingyu, 2022. "Is oil-gas price decoupling happening in China? A multi-scale quantile-on-quantile approach," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 450-470.
    6. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
    7. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    9. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    10. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    11. Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
    12. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    13. Wang, Zuyi & Kim, Man-Keun, 2022. "Price bubbles in oil & gas markets and their transfer," Resources Policy, Elsevier, vol. 79(C).
    14. Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
    15. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    16. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    17. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    18. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    19. Theodosios Perifanis & Athanasios Dagoumas, 2020. "Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 432-446.
    20. Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).

    More about this item

    Keywords

    natural gas price; structural breaks; forecasting; time-varying pa- rameter; Markov switching; stochastic volatility.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tas:wpaper:32412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oscar Pavlov (email available below). General contact details of provider: https://edirc.repec.org/data/dutasau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.