IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19980067.html
   My bibliography  Save this paper

Pricing Stock Options under Stochastic Volatility and Stochastic Interest Rates with Efficient Method of Moments Estimation

Author

Listed:
  • George J. Jiang

    (University of Groningen)

  • Pieter J. van der Sluis

    (University of Amsterdam)

Abstract

While the stochastic volatility (SV) generalization has been shown to improvethe explanatory power compared to the Black-Scholes model, the empiricalimplications of the SV models on option pricing have not been adequately tested.The purpose of this paper is to first estimate a multivariate SV model using theefficient method of moments (EMM) technique and then investigate the respectiveeffect of stochastic interest rate, systematic volatility and idiosyncraticvolatility on option prices. We compute option prices using both underlyinghistorical volatilities obtained through reprojection and volatilities impliedfrom observed option prices and gauge each model's performance through directcomparison with observed market option prices. Our results suggest: (i) Whiletheory predicts that the short-term interest rates are strongly related to thesystematc volatility of the consumption process, our estimation results suggestthat the short-term interest rate fails to be a good proxy of the systematicfactor; (ii) While allowing for stochastic volatility of stock returns can ingeneral reduce the pricing errors and allowing for asymmetry or "leverageeffect'' in the SV models does help to explain the skewness of the volatility"smile'', allowing for stochastic interest rate has minimal impact on optionprices in our case; (iii) Similar to Melino and Turnbull (1990), our empiricalfindings strongly suggest the existence of a non-zero risk premum for stochasticvolatility of stock returns. Allowing for non-zero risk-premium of stochasticvolatility and based on implied volatility, the SV models can largely reduce theoption pricing errors, suggesting the importance of incorporating theinformation in the options market in pricing options.

Suggested Citation

  • George J. Jiang & Pieter J. van der Sluis, 1998. "Pricing Stock Options under Stochastic Volatility and Stochastic Interest Rates with Efficient Method of Moments Estimation," Tinbergen Institute Discussion Papers 98-067/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19980067
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/98067.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    3. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    4. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    7. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    8. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    9. Karolyi, G. Andrew, 1993. "A Bayesian Approach to Modeling Stock Return Volatility for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 579-594, December.
    10. Ho, Mun S & Perraudin, William R M & Sorensen, Bent E, 1996. "A Continuous-Time Arbitrage-Pricing Model with Stochastic Volatility and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 31-43, January.
    11. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    12. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    13. Pieter J. Van Der Sluis, 1998. "Computationally attractive stability tests for the efficient method of moments," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 203-227.
    14. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833, September.
    15. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, September.
    16. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    17. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    18. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    19. Jones, E. Philip, 1984. "Option arbitrage and strategy with large price changes," Journal of Financial Economics, Elsevier, vol. 13(1), pages 91-113, March.
    20. Stanton, Richard, 1997. "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    21. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 267-284, September.
    22. Bansal, Ravi & Gallant, A. Ronald & Hussey, Robert & Tauchen, George, 1995. "Nonparametric estimation of structural models for high-frequency currency market data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 251-287.
    23. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    24. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    25. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819, September.
    26. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    27. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    28. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    29. Louis O. Scott, 1997. "Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 413-426, October.
    30. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    31. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    32. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, September.
    33. A. Ronald Gallant & George Tauchen, "undated". "Reproducing Partial Observed Systems with Application to Interest Rate Diffusions," Computing in Economics and Finance 1997 114, Society for Computational Economics.
    34. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    35. Black, Fischer & Scholes, Myron S, 1972. "The Valuation of Option Contracts and a Test of Market Efficiency," Journal of Finance, American Finance Association, vol. 27(2), pages 399-417, May.
    36. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 153-173, Suppl. De.
    37. Daníelsson Jón, 1996. "Estimation of the Stochastic Volatility Models by Simulated Maximum Likelihood: C++ Code," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-8, April.
    38. Bodurtha, James N. & Courtadon, Georges R., 1987. "Tests of an American Option Pricing Model on the Foreign Currency Options Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 153-167, June.
    39. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    2. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    3. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    4. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    7. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    8. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    9. George J. Jiang & Pieter J. van der Sluis, 1999. "Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates," Review of Finance, European Finance Association, vol. 3(3), pages 273-310.
    10. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    11. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    12. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    13. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    14. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Pieter J. van der Sluis, 1998. "Structural Stability Tests with Unknown Breakpoint for the Efficient Method of Moments with Application to Stochastic Volatility Models," Tinbergen Institute Discussion Papers 98-055/4, Tinbergen Institute.
    16. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    19. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    20. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19980067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.