IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v7y2019i4p59-d275379.html
   My bibliography  Save this article

Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets

Author

Listed:
  • Tihana Škrinjarić

    (Faculty of Economics and Business, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

This research observes a time varying relationship between stock returns, volatilities and the online search volume in regard to selected CESEE (Central, Eastern and South-Eastern European) stock markets. The main hypothesis of the research assumes that a feedback relationship exists between stock returns, volatilities and the investor’s attention variable (captured by the online search volume). Moreover, the relationship is assumed to be time varying due to changing market conditions. Previous research does not deal with the time-varying multi-directional relationship. Thus, the contribution to existing research consists of estimating the aforementioned relationship between return, volatility and the search volume series for selected CESEE countries by using a novel approach of spillover indices within the VAR (Vector AutoRegression) model framework. The results indicate that the Google search volume affects the risk series more than the return series on the selected markets.

Suggested Citation

  • Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
  • Handle: RePEc:gam:jijfss:v:7:y:2019:i:4:p:59-:d:275379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/7/4/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/7/4/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    2. Frieder, Laura & Subrahmanyam, Avanidhar, 2005. "Brand Perceptions and the Market for Common Stock," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(1), pages 57-85, March.
    3. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    4. Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
    5. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    6. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2002. "Breadth of ownership and stock returns," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 171-205.
    7. Zhang, Wei & Shen, Dehua & Zhang, Yongjie & Xiong, Xiong, 2013. "Open source information, investor attention, and asset pricing," Economic Modelling, Elsevier, vol. 33(C), pages 613-619.
    8. Mert Demirer & Umut Gokcen & Kamil Yilmaz, 2018. "Financial Sector Volatility Connectedness and Equity Returns," Koç University-TUSIAD Economic Research Forum Working Papers 1803, Koc University-TUSIAD Economic Research Forum.
    9. Tao Chen, 2017. "Investor Attention and Global Stock Returns," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(3), pages 358-372, July.
    10. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    11. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    12. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
    13. Greg Tkacz, 2013. "Predicting Recessions in Real-Time: Mining Google Trends and Electronic Payments Data for Clues," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 387, September.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Jaemin Woo & Ann L. Owen, 2019. "Forecasting private consumption with Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 81-91, March.
    16. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    17. Junru Zhang & Hadrian Geri Djajadikerta & Zhaoyong Zhang, 2018. "Does Sustainability Engagement Affect Stock Return Volatility? Evidence from the Chinese Financial Market," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    18. repec:bla:jfinan:v:53:y:1998:i:5:p:1775-1798 is not listed on IDEAS
    19. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    20. Merton, Robert C, 1987. "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    21. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    22. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    23. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    24. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    25. Peng, Lin & Xiong, Wei, 2006. "Investor attention, overconfidence and category learning," Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
    26. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    27. Francis X. Diebold & Kamil Yilmaz, 2011. "Equity Market Spillovers in the Americas," Central Banking, Analysis, and Economic Policies Book Series, in: Rodrigo Alfaro (ed.),Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 7, pages 199-214, Central Bank of Chile.
    28. Mehwish Aziz Khan & Eatzaz Ahmad, 2018. "Measurement of Investor Sentiment and Its Bi-Directional Contemporaneous and Lead–Lag Relationship with Returns: Evidence from Pakistan," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    29. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    30. Urbina, Jilber, 2013. "Financial Spillovers Across Countries: Measuring shock transmissions," MPRA Paper 75756, University Library of Munich, Germany.
    31. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    32. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    33. Lily Fang & Joel Peress, 2009. "Media Coverage and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(5), pages 2023-2052, October.
    34. Grinblatt, Mark & Keloharju, Matti, 2000. "The investment behavior and performance of various investor types: a study of Finland's unique data set," Journal of Financial Economics, Elsevier, vol. 55(1), pages 43-67, January.
    35. Tian Yang & Jinsong Liu & Qianwei Ying & Tahir Yousaf, 2019. "Media Coverage and Sustainable Stock Returns: Evidence from China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    36. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    37. Sibley, Steven E. & Wang, Yanchu & Xing, Yuhang & Zhang, Xiaoyan, 2016. "The information content of the sentiment index," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 164-179.
    38. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
    39. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    40. Mondria, Jordi & Wu, Thomas & Zhang, Yi, 2010. "The determinants of international investment and attention allocation: Using internet search query data," Journal of International Economics, Elsevier, vol. 82(1), pages 85-95, September.
    41. Li, Jun & Yu, Jianfeng, 2012. "Investor attention, psychological anchors, and stock return predictability," Journal of Financial Economics, Elsevier, vol. 104(2), pages 401-419.
    42. Gustavo Grullon, 2004. "Advertising, Breadth of Ownership, and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 439-461.
    43. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    44. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
    45. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    46. Ume Habibah & Suresh Rajput & Ranjeeta Sadhwani, 2017. "Stock market return predictability: Google pessimistic sentiments versus fear gauge," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1390897-139, January.
    47. Tantaopas, Parkpoom & Padungsaksawasdi, Chaiyuth & Treepongkaruna, Sirimon, 2016. "Attention effect via internet search intensity in Asia-Pacific stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 38(C), pages 107-124.
    48. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    49. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    50. Alin Marius ANDRIEŞ & Iulian IHNATOV & Nicu SPRINCEAN, 2017. "Do Seasonal Anomalies Still Exist In Central And Eastern European Countries? A Conditional Variance Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 60-83, December.
    51. Dzielinski, Michal, 2012. "Measuring economic uncertainty and its impact on the stock market," Finance Research Letters, Elsevier, vol. 9(3), pages 167-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nepp, Alexander & Okhrin, Ostap & Egorova, Julia & Dzhuraeva, Zarnigor & Zykov, Alexander, 2022. "What threatens stock markets more - The coronavirus or the hype around it?," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 519-539.
    2. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    2. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    3. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    4. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    5. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    6. Ana Brochado, 2016. "Investor attention and Portuguese stock market volatility: We’ll google it for you!," EcoMod2016 9345, EcoMod.
    7. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    8. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    9. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    10. Sifat, Imtiaz Mohammad & Thaker, Hassanudin Mohd Thas, 2020. "Predictive power of web search behavior in five ASEAN stock markets," Research in International Business and Finance, Elsevier, vol. 52(C).
    11. Tripathi, Abhinava & Pandey, Ashish, 2021. "Information dissemination across global markets during the spread of COVID-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 103-115.
    12. Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
    13. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    14. Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
    15. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    16. Peltomäki, Jarkko & Graham, Michael & Hasselgren, Anton, 2018. "Investor attention to market categories and market volatility: The case of emerging markets," Research in International Business and Finance, Elsevier, vol. 44(C), pages 532-546.
    17. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    18. Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
    19. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    20. Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:7:y:2019:i:4:p:59-:d:275379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.