IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i3d10.1007_s13253-021-00450-6.html
   My bibliography  Save this article

Varying-Coefficient Stochastic Differential Equations with Applications in Ecology

Author

Listed:
  • Théo Michelot

    (University of St Andrews)

  • Richard Glennie

    (University of St Andrews)

  • Catriona Harris

    (University of St Andrews)

  • Len Thomas

    (University of St Andrews)

Abstract

Stochastic differential equations (SDEs) are popular tools to analyse time series data in many areas, such as mathematical finance, physics, and biology. They provide a mechanistic description of the phenomenon of interest, and their parameters often have a clear interpretation. These advantages come at the cost of requiring a relatively simple model specification. We propose a flexible model for SDEs with time-varying dynamics where the parameters of the process are nonparametric functions of covariates, similar to generalized additive models. Combining the SDE and nonparametric approaches allows for the SDE to capture more detailed, non-stationary, features of the data-generating process. We present a computationally efficient method of approximate inference, where the SDE parameters can vary according to fixed covariate effects, random effects, or basis-penalty smoothing splines. We demonstrate the versatility and utility of this approach with three applications in ecology, where there is often a modelling trade-off between interpretability and flexibility. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Théo Michelot & Richard Glennie & Catriona Harris & Len Thomas, 2021. "Varying-Coefficient Stochastic Differential Equations with Applications in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 446-463, September.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:3:d:10.1007_s13253-021-00450-6
    DOI: 10.1007/s13253-021-00450-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00450-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00450-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enrico Pirotta & Lisa K Schwarz & Daniel P Costa & Patrick W Robinson & Leslie New, 2019. "Modeling the functional link between movement, feeding activity, and condition in a marine predator," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(2), pages 434-445.
    2. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    3. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    4. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    5. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    6. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    7. Rajabzadeh, Yalda & Rezaie, Amir Hossein & Amindavar, Hamidreza, 2016. "A robust nonparametric framework for reconstruction of stochastic differential equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 294-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002108 is not listed on IDEAS
    2. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    4. Thi Huong Trinh & Christine Thomas-Agnan & Michel Simioni, 2016. "Calorie intake and income in China: new evidence using semiparametric modelling with generalized additive models," Post-Print hal-01515007, HAL.
    5. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    6. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    7. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    8. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    9. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    10. Choi, Seungmoon, 2013. "Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 174(2), pages 45-65.
    11. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    12. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    13. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    14. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    16. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    17. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    18. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    19. Dennis Kristensen & Young Jun Lee & Antonio Mele, 2023. "Closed-form approximations of moments and densities of continuous-time Markov models," Papers 2308.09009, arXiv.org.
    20. David C. Broadstock & Shunsuke Managi & Roman Matousek & Nickolaos G. Tzeremes, 2019. "Does doing “good” always translate into doing “well”? An eco‐efficiency perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 1199-1217, September.
    21. Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:3:d:10.1007_s13253-021-00450-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.