Forecasting volatility with empirical similarity and Google Trends
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jebo.2015.06.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011.
"Backtesting Value-at-Risk: A GMM Duration-Based Test,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 266, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363165, HAL.
- Candelon, B. & Colletaz, G. & Hurlin, C. & Tokpavi, S., 2009. "Backtesting value-at-risk : a GMM duration-based test," Research Memorandum 062, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2009. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 265, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364793, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363168, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364797, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363146, HAL.
- Christophe Hurlin & Gilbert Colletaz & Sessi Tokpavi & Bertrand Candelon, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Working Papers halshs-00329495, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based-Test," Post-Print halshs-00364796, HAL.
- Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud Mehl, 2014.
"The Global Crisis and Equity Market Contagion,"
Journal of Finance, American Finance Association, vol. 69(6), pages 2597-2649, December.
- Bekaert, Geert & Ehrmann, Michael & Fratzscher, Marcel & Mehl, Arnaud, 2011. "Global crises and equity market contagion," CEPR Discussion Papers 8438, C.E.P.R. Discussion Papers.
- Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud Mehl, 2014. "The Global Crisis and Equity Market Contagion," Discussion Papers of DIW Berlin 1352, DIW Berlin, German Institute for Economic Research.
- Ehrmann, Michael & Fratzscher, Marcel & Mehl, Arnaud & Bekaert, Geert, 2011. "Global crises and equity market contagion," Working Paper Series 1381, European Central Bank.
- Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud J. Mehl, 2011. "Global Crises and Equity Market Contagion," NBER Working Papers 17121, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Brad M. Barber & Terrance Odean & Ning Zhu, 2009. "Do Retail Trades Move Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 151-186, January.
- Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013.
"The Risk Map: A new tool for validating risk models,"
Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
- Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2012. "The Risk Map: A New Tool for Validating Risk Models," Working Papers halshs-00746273, HAL.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Jose A. Lopez, 1999.
"Methods for evaluating value-at-risk estimates,"
Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 119-124.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
- Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
- Itzhak Gilboa & David Schmeidler, 1995.
"Case-Based Decision Theory,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 605-639.
- Itzhak Gilboa & David Schmeidler, 1992. "Case-Based Decision Theory," Discussion Papers 994, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," Post-Print hal-00753144, HAL.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012.
"Empirical Similarity,"
World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 9, pages 211-243,
World Scientific Publishing Co. Pte. Ltd..
- Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2006. "Empirical Similarity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 433-444, August.
- Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2004. "Empirical Similarity," Cowles Foundation Discussion Papers 1486, Cowles Foundation for Research in Economics, Yale University.
- Itzhak Gilboa & David Schmeidler & Offer Lieberman, 2006. "Empirical Similarity," Post-Print hal-00746558, HAL.
- Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2004. "Empirical Similarity," Levine's Bibliography 122247000000000684, UCLA Department of Economics.
- Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
- Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
- Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
- Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
- West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993.
"A utility-based comparison of some models of exchange rate volatility,"
Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
- Kenneth D. West & Hali J. Edison & Dongchul Cho, 1992. "A Utility Based Comparison of Some Models of Exchange Rate Volatility," NBER Technical Working Papers 0128, National Bureau of Economic Research, Inc.
- Dongchul Cho & Hali J. Edison & Kenneth D. West, 1993. "A utility based comparison of some models of exchange rate volatility," International Finance Discussion Papers 441, Board of Governors of the Federal Reserve System (U.S.).
- Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
- Alfarano, Simone & Lux, Thomas, 2007.
"A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory,"
Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
- Alfarano, Simone & Lux, Thomas, 2005. "A noise trader model as a generator of apparent financial power laws and long memory," Economics Working Papers 2005-13, Christian-Albrechts-University of Kiel, Department of Economics.
- Guerdjikova, Ani, 2008. "Case-based learning with different similarity functions," Games and Economic Behavior, Elsevier, vol. 63(1), pages 107-132, May.
- Dan Li & Geng Li, 2014. "Are Household Investors Noise Traders: Evidence from Belief Dispersion and Stock Trading Volume," Finance and Economics Discussion Series 2014-35, Board of Governors of the Federal Reserve System (U.S.).
- Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Danielsson, Jon & Zigrand, Jean-Pierre, 2006.
"On time-scaling of risk and the square-root-of-time rule,"
Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
- Danielsson, Jon & Zigrand, Jean-Pierre, 2003. "On time-scaling of risk and the square–root–of–time rule," LSE Research Online Documents on Economics 24827, London School of Economics and Political Science, LSE Library.
- Jean-Pierre Zigrand & Jon Danielsson, 2003. "On time-scaling of risk and the square–root–of–time rule," FMG Discussion Papers dp439, Financial Markets Group.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1032-1059, August.
- Sun, Yixiao & Phillips, Peter C. B., 2003.
"Nonlinear log-periodogram regression for perturbed fractional processes,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
- Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
- Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
- Bekaert, Geert & Wu, Guojun, 2000.
"Asymmetric Volatility and Risk in Equity Markets,"
The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
- Geert Bekaert & Guojun Wu, 1997. "Asymmetric Volatility and Risk in Equity Markets," NBER Working Papers 6022, National Bureau of Economic Research, Inc.
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- R. Glen Donaldson & Mark J. Kamstra, 2005.
"Volatility Forecasts, Trading Volume, And The Arch Versus Option‐Implied Volatility Trade‐Off,"
Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(4), pages 519-538, December.
- Glen Donaldson & Mark Kamstra, 2004. "Volatility forecasts, trading volume, and the ARCH versus option-implied volatility trade-off," FRB Atlanta Working Paper 2004-6, Federal Reserve Bank of Atlanta.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.
- Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
- Cuoco, Domenico & Liu, Hong, 2006. "An analysis of VaR-based capital requirements," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 362-394, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
- Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
- Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
- Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
- Degiannakis, Stavros & Filis, George, 2022.
"Oil price volatility forecasts: What do investors need to know?,"
Journal of International Money and Finance, Elsevier, vol. 123(C).
- Degiannakis, Stavros & Filis, George, 2019. "Oil price volatility forecasts: What do investors need to know?," MPRA Paper 94445, University Library of Munich, Germany.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
More about this item
Keywords
Empirical similarity; Google trends; Investor attention; Volatility; Forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:117:y:2015:i:c:p:62-81. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.